Description

  某人在山上种了N棵小树苗。冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄
膜把这些小树遮盖起来,经过一番长久的思考,他决定用3个L*L的正方形塑料薄膜将小树遮起来。我们不妨将山建
立一个平面直角坐标系,设第i棵小树的坐标为(Xi,Yi),3个L*L的正方形的边要求平行与坐标轴,一个点如果在
正方形的边界上,也算作被覆盖。当然,我们希望塑料薄膜面积越小越好,即求L最小值。

Input

  第一行有一个正整数N,表示有多少棵树。接下来有N行,第i+1行有2个整数Xi,Yi,表示第i棵树的坐标,保证
不会有2个树的坐标相同。

Output

  一行,输出最小的L值。

Sample Input

4
0 1
0 -1
1 0
-1 0

Sample Output

1

HINT

100%的数据,N<=20000

题解

每次对于一些点,我们把它们用一个最小的长方形框起来,把正方形放在四角之一

然后就产生了一个子问题,显然这样做是最优的

二分即可

#include<stdio.h>
#include<iostream>
#define inf 1000000000
#define il inline
using namespace std;
const int N=;
struct P{int x,y;} a[N];
int n,chk[N];
il void cover(int d,int u,int l,int r,int k){
for(int i=;i<=n;i++) if(chk[i]==){
if(l<=a[i].x&&a[i].x<=r&&d<=a[i].y&&a[i].y<=u){
chk[i]=k;
}
}
}
il void uncover(int k){
for(int i=;i<=n;i++)
if(chk[i]==k){
chk[i]=;
}
}
il bool fulfill(){
for(int i=;i<=n;i++)
if(chk[i]==) return ;
return ;
}
il int dfs(int k,int lim){
if(fulfill()) return true;
if(k==) return false;
int u=-inf,d=inf,l=inf,r=-inf,flag=;
for(int i=;i<=n;i++){
if(chk[i]==){
u=max(u,a[i].y);
d=min(d,a[i].y);
l=min(l,a[i].x);
r=max(r,a[i].x);
}
}
/*cout<<k<<" "<<lim<<endl;
for(int i=1;i<=n;i++)
cout<<chk[i]<<" ";
cout<<endl;
cout<<l<<" "<<r<<" "<<d<<" "<<u<<endl;
system("pause");*/
cover(d,d+lim,l,l+lim,k);
if(dfs(k+,lim)) flag=;
uncover(k);
cover(d,d+lim,r-lim,r,k);
if(dfs(k+,lim)) flag=;
uncover(k);
cover(u-lim,u,r-lim,r,k);
if(dfs(k+,lim)) flag=;
uncover(k);
cover(u-lim,u,l,l+lim,k);
if(dfs(k+,lim)) flag=;
uncover(k);
return flag;
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d%d",&a[i].x,&a[i].y);
int l=,r=inf,mid;
while(l<r){
mid=(l+r)/;
if(dfs(,mid)) r=mid;
else l=mid+;
}
cout<<r;
return ;
}

bzoj1052的更多相关文章

  1. 【bzoj1052】覆盖问题

    [bzoj1052]覆盖问题 分析 考虑二分\(L\)的值,然后判断3个\(L*L\)能否覆盖所有的点. 这时候出现了两种可能的思路. 思路1 首先,3是一个很小的常数. 我们想:假如能探究出1和2的 ...

  2. 【BZOJ1052】 [HAOI2007]覆盖问题

    BZOJ1052 [HAOI2007]覆盖问题 前言 小清新思维题. 最近肯定需要一些思维题挽救我这种碰到题目只会模板的菜鸡. 这题腾空出世? Solution 考虑一下我们二分答案怎么做? 首先转换 ...

  3. 【BZOJ1052】覆盖问题(贪心)

    [BZOJ1052]覆盖问题(贪心) 题面 BZOJ 洛谷 题解 这题好神仙啊. 很明显可以看出来要二分一个边长. 那么如何\(check\)呢? 我们把所有点用一个最小矩形覆盖, 那么必定每个边界上 ...

  4. 【二分 贪心】覆盖问题 BZOJ1052 HAOI2007

    覆盖问题 bzoj1052 题目来源:HAOI 2007 题目描述 某人在山上种了N棵小树苗.冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄膜把这些小树遮盖起来,经过一番长久的 ...

  5. bzoj1052: [HAOI2007]覆盖问题(二分+构造)

    貌似又写出了常数挺优(至少不劣)的代码>v< 930+人AC #49 写了个O(nlogn)貌似比一些人O(n)还快2333333 这题还是先二分答案,check比较麻烦 显然正方形一定以 ...

  6. [bzoj1052] [HAOI2007]覆盖问题

    Description 某人在山上种了N棵小树苗.冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄膜把这些小树遮盖起来,经过一番长久的思考,他决定用3个L * L的正方形塑料薄膜 ...

  7. [BZOJ1052][HAOI2007]覆盖问题 二分+贪心

    1052: [HAOI2007]覆盖问题 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 2053  Solved: 959 [Submit][Sta ...

  8. bzoj1052 [HAOI2007]覆盖问题 - 贪心

    Description 某人在山上种了N棵小树苗.冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄膜把这些小树遮盖起来,经过一番长久的思考,他决定用3个L*L的正方形塑料薄膜将小 ...

  9. bzoj1052覆盖问题(二分+贪心)

    1052: [HAOI2007]覆盖问题 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2446  Solved: 1131[Submit][Stat ...

随机推荐

  1. vim打开多窗口、多文件之间的切换

    打开多个文件: 一.vim还没有启动的时候: 1.在终端里输入  vim file1 file2 ... filen便可以打开所有想要打开的文件 2.vim已经启动 输入 :e file 可以再打开一 ...

  2. 汇编 OR运算

    知识点:  OR运算  逻辑或  按位或 一.OR运算 12||1=1; 1||01=1; 0||0=0; || //逻辑或 | //按位或 int _tmain(int argc, _TCHA ...

  3. Selenium-Css Selector使用方法

    什么是Css Selector? Css Selector定位实际就是HTML的Css选择器的标签定位 工具 Css Selector的练习建议大家安装火狐浏览器后,下载插件,FireFinder 或 ...

  4. mysql 配置 root 远程访问

    来源: https://www.cnblogs.com/24la/p/mariadb-remoting-access.html 首先配置允许访问的用户,采用授权的方式给用户权限 GRANT ALL P ...

  5. ECMAScript6——Set数据结构

    /** * 数据结构 Set */ // ----------------------------------------------------- /** * 集合的基本概念:集合是由一组无序且唯一 ...

  6. R语言学习 第二篇:矩阵和数组

    向量是一维的,只有行这一个维度,没有其他维度.R可以创建更高维度的数据对象,例如,矩阵.数据框.数组,索引高维度的对象时,需要使用元素的下标.这些对象的下标都使用中括号[]和索引,第一个维度是row, ...

  7. HTML快速入门(一)

    一.HTML 是什么? HTML 指的是超文本标记语言 (Hyper Text Markup Language) HTML 不是一种编程语言,而是一种标记语言 (markup language) 标记 ...

  8. CSS技巧收集——巧用滤镜

    最近暴雪一款叫<守望先锋>的游戏火到不行,身边很多人都深受其毒害,虽然博主自己没有买(穷),但是耳濡目染也了解了个大概. 由于之前大致学习了一下 css 滤镜的各种用法,所以心血来潮结合二 ...

  9. npm install —— 从一个简单例子,看本地安装与全局安装的区别

    npm的包安装分为本地安装(local).全局安装(global)两种,从敲的命令行来看,差别只是有没有-g而已,比如 npm install grunt # 本地安装 npm install -g ...

  10. Python_xlutils.copy

    import xlrd import xlwt from xlutils.copy import copy # 读取工作簿 objWB = xlrd.open_workbook(r'C:\Users\ ...