1.初步认识跳跃表

图中所示,跳跃表与普通链表的区别在于,每一个节点可以有多个后置节点,图中是一个4层的跳跃表

第0层: head->3->6->7->9->12->17->19->21->25->26->tail
第1层: head->6->9->17->25->tail
第2层: head->6->25->tail
第3层: head->6->tail

传统意义的单链表是一个线性结构,向有序的链表中插入一个节点需要O(n)的时间,查找操作需要O(n)的时间。如果我们使用图中所示的跳跃表,就可以减少查找所需时间为O(n/2),因为我们可以先通过每个节点的最上面的指针先进行查找,这样子就能跳过一半的节点。比如我们想查找19,首先和6比较,大于6之后,在和9进行比较,然后在和12进行比较......最后比较到21的时候,发现21大于19,说明查找的点在17和21之间,从这个过程中,我们可以看出,查找的时候跳过了3、7、12等点,因此查找的复杂度为O(n/2)。

2.redis中实现的skiplist

  • 结构体 zskiplist

    typedef struct zskiplist {
    
      // 表头节点和表尾节点
    struct zskiplistNode *header, *tail; // 表中节点的数量
    unsigned long length; // 表中层数最大的节点的层数
    int level; } zskiplist;
    // 节点
    typedef struct zskiplistNode { // 成员对象
    robj *obj; // 分值
    double score; // 后退指针
    struct zskiplistNode *backward; // 前一个节点 // 层
    struct zskiplistLevel { // 前进指针
    struct zskiplistNode *forward; // 下一个节点 // 跨度
    unsigned int span; // 当前节点在第i层到下一个节点forward需要跨过的节点数 } level[]; } zskiplistNode;

redis实现的跳跃表特点:

1.zskiplistNode中保存着前置节点backward
2.跳跃表的层数最大值32,每次插入新节点都会生成一个随机的level(1~32)作为新节点的层数
3.删除节点可能会引起跳跃表层数的下降,插入节点可能会引起跳跃表层数上升
4.查找节点的时间复杂度平均为 O(logn)
5.插入和删除的成本都比较低,拥有平衡二叉树的查找性能
  • 创建一条skiplist

       // 创建一条长度为0的skiplist
    zskiplist *zslCreate(void) {
    int j;
    zskiplist *zsl; // 分配空间
    zsl = zmalloc(sizeof(*zsl)); zsl->level = 1; // 起始层数
    zsl->length = 0; // 跳跃表长度 // 初始化表头节点
    // T = O(1)
    zsl->header = zslCreateNode(ZSKIPLIST_MAXLEVEL,0,NULL);
    for (j = 0; j < ZSKIPLIST_MAXLEVEL; j++) {
    zsl->header->level[j].forward = NULL;
    zsl->header->level[j].span = 0;
    }
    zsl->header->backward = NULL; // 设置表尾
    zsl->tail = NULL; return zsl;
    } // 创建新节点
    zskiplistNode *zslCreateNode(int level, double score, robj *obj) { // 分配空间
    zskiplistNode *zn = zmalloc(sizeof(*zn)+level*sizeof(struct zskiplistLevel)); // 设置属性
    zn->score = score;
    zn->obj = obj; return zn;
    }
  • 插入一个节点

     zskiplistNode *zslInsert(zskiplist *zsl, double score, robj *obj) {
    zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
    unsigned int rank[ZSKIPLIST_MAXLEVEL];
    int i, level; redisAssert(!isnan(score)); // 保证score合法性 // level越高每一次forward跨越的节点越多,先大间距的查找,随着level的减小,查找范围逐渐缩小
    x = zsl->header;
    for (i = zsl->level-1; i >= 0; i--) { // rank[i]用来记录当前节点x与header的距离,随着x的移动,rank[i]实时更新
    rank[i] = i == (zsl->level-1) ? 0 : rank[i+1]; // 沿着前进指针遍历跳跃表
    // T_wrost = O(N^2), T_avg = O(N log N)
    while (x->level[i].forward &&
    (x->level[i].forward->score < score ||
    // 比对分值
    (x->level[i].forward->score == score &&
    // 比对成员, T = O(N)
    compareStringObjects(x->level[i].forward->obj,obj) < 0))) { // 记录沿途跨越了多少个节点
    rank[i] += x->level[i].span; // 移动至下一指针
    x = x->level[i].forward;
    }
    // 第i层第一个大于 score的节点,将作为插入节点obj在第i层连接的的前一个节点
    update[i] = x;
    } /* we assume the key is not already inside, since we allow duplicated
    * scores, and the re-insertion of score and redis object should never
    * happen since the caller of zslInsert() should test in the hash table
    * if the element is already inside or not.
    *
    * zslInsert() 的调用者会确保同分值且同成员的元素不会出现,
    * 所以这里不需要进一步进行检查,可以直接创建新元素。
    */ // 获取一个随机值作为新节点的层数
    // T = O(N)
    level = zslRandomLevel(); // 如果新节点的层数比表中其他节点的层数都要大
    // 那么初始化表头节点中未使用的层,并将它们记录到 update 数组中
    // 将来也指向新节点
    if (level > zsl->level) { // 初始化未使用层
    // T = O(1)
    for (i = zsl->level; i < level; i++) {
    rank[i] = 0;
    update[i] = zsl->header;
    update[i]->level[i].span = zsl->length;
    } // 更新表中节点最大层数
    zsl->level = level;
    } // 创建新节点
    x = zslCreateNode(level,score,obj); // 将前面记录的指针指向新节点,并做相应的设置
    // update[i]保存着第i层x的前置节点,rank[i]保存的是第i层x的前置节点离header的距离,rank[0]+1即是x离header的距离
    for (i = 0; i < level; i++) { // 设置新节点的 forward 指针
    x->level[i].forward = update[i]->level[i].forward; // 将沿途记录的各个节点的 forward 指针指向新节点
    update[i]->level[i].forward = x; /* update span covered by update[i] as x is inserted here */
    // 用x前置节点到x后置节点的跨度减去x到前置节点的距离等于x到后置节点的跨度
    x->level[i].span = update[i]->level[i].span - (rank[0] - rank[i]); // 更新新节点插入之后,沿途节点的 span 值
    // 其中的 +1 计算的是新节点
    update[i]->level[i].span = (rank[0] - rank[i]) + 1; // (rank[0] - rank[i]) 为x距离update[i]的距离
    } /* increment span for untouched levels */
    // 未接触的节点的 span 值也需要增一,因为这些节点到后置节点中间插入了一个节点x
    // T = O(1)
    for (i = level; i < zsl->level; i++) {
    update[i]->level[i].span++;
    } // 设置新节点的后退指针
    x->backward = (update[0] == zsl->header) ? NULL : update[0];
    if (x->level[0].forward)
    x->level[0].forward->backward = x;
    else
    zsl->tail = x; // x是跳跃表的尾部节点 // 跳跃表的节点计数增一
    zsl->length++; return x;
    }
  • 删除一个节点

    int zslDelete(zskiplist *zsl, double score, robj *obj) {
    zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
    int i; // 遍历跳跃表,查找目标节点,并记录所有沿途节点
    // T_wrost = O(N^2), T_avg = O(N log N)
    x = zsl->header;
    for (i = zsl->level-1; i >= 0; i--) { // 遍历跳跃表的复杂度为 T_wrost = O(N), T_avg = O(log N)
    while (x->level[i].forward &&
    (x->level[i].forward->score < score ||
    // 比对分值
    (x->level[i].forward->score == score &&
    // 比对对象,T = O(N)
    compareStringObjects(x->level[i].forward->obj,obj) < 0))) // 沿着前进指针移动
    x = x->level[i].forward; // 第i层上obj的前一个节点
    update[i] = x;
    } /* We may have multiple elements with the same score, what we need
    * is to find the element with both the right score and object.
    *
    * 检查找到的元素 x ,只有在它的分值和对象都相同时,才将它删除。
    */
    x = x->level[0].forward; // 指向目标节点
    if (x && score == x->score && equalStringObjects(x->obj,obj)) { // 目标节点与obj一样
    // T = O(1)
    zslDeleteNode(zsl, x, update); // 已知目标节点每一层的前置节点,删除目标节点
    // T = O(1)
    zslFreeNode(x); // 释放目标节点内存
    return 1;
    } else { // 目标节点与obj不匹配
    return 0; /* not found */
    } return 0; /* not found */
    } // update数组存储着要删除的节点x的前置节点
    void zslDeleteNode(zskiplist *zsl, zskiplistNode *x, zskiplistNode **update) {
    int i; // 更新所有和被删除节点 x 有关的节点的指针,解除它们之间的关系
    // T = O(1)
    for (i = 0; i < zsl->level; i++) {
    if (update[i]->level[i].forward == x) { // update[i]是第i层在x前面的节点而且是前置节点
    update[i]->level[i].span += x->level[i].span - 1; // 更新前置节点的span
    update[i]->level[i].forward = x->level[i].forward; // 更新前置节点的forward
    } else { // update[i]是第i层在x前面的节点,没有和x建立连接
    update[i]->level[i].span -= 1; // 减去中间少的1个
    }
    } // 更新被删除节点 x 的前进和后退指针
    if (x->level[0].forward) {
    x->level[0].forward->backward = x->backward;
    } else { // x是尾部节点
    zsl->tail = x->backward;
    } // 更新跳跃表最大层数(只在被删除节点是跳跃表中最高的节点时才执行)
    // T = O(1)
    while(zsl->level > 1 && zsl->header->level[zsl->level-1].forward == NULL)
    zsl->level--; // 跳跃表节点计数器减一
    zsl->length--;
    }

redis源码学习-skiplist的更多相关文章

  1. Redis源码学习:字符串

    Redis源码学习:字符串 1.初识SDS 1.1 SDS定义 Redis定义了一个叫做sdshdr(SDS or simple dynamic string)的数据结构.SDS不仅用于 保存字符串, ...

  2. Redis源码学习:Lua脚本

    Redis源码学习:Lua脚本 1.Sublime Text配置 我是在Win7下,用Sublime Text + Cygwin开发的,配置方法请参考<Sublime Text 3下C/C++开 ...

  3. redis源码学习之slowlog

    目录 背景 环境说明 redis执行命令流程 记录slowlog源码分析 制造一条slowlog slowlog分析 1.slowlog如何开启 2.slowlog数量限制 3.slowlog中的耗时 ...

  4. 柔性数组(Redis源码学习)

    柔性数组(Redis源码学习) 1. 问题背景 在阅读Redis源码中的字符串有如下结构,在sizeof(struct sdshdr)得到结果为8,在后续内存申请和计算中也用到.其实在工作中有遇到过这 ...

  5. __sync_fetch_and_add函数(Redis源码学习)

    __sync_fetch_and_add函数(Redis源码学习) 在学习redis-3.0源码中的sds文件时,看到里面有如下的C代码,之前从未接触过,所以为了全面学习redis源码,追根溯源,学习 ...

  6. redis源码学习之工作流程初探

    目录 背景 环境准备 下载redis源码 下载Visual Studio Visual Studio打开redis源码 启动过程分析 调用关系图 事件循环分析 工作模型 代码分析 动画演示 网络模块 ...

  7. redis源码学习之lua执行原理

    聊聊redis执行lua原理 从一次面试场景说起   "看你简历上写的精通redis" "额,还可以啦" "那你说说redis执行lua脚本的原理&q ...

  8. Redis源码学习-Master&Slave的命令交互

    0. 写在前面 Version Redis2.2.2 Redis中可以支持主从结构,本文主要从master和slave的心跳机制出发(PING),分析redis的命令行交互. 在Redis中,serv ...

  9. Redis源码学习1-sds.c

    https://github.com/huangz1990/redis-3.0-annotated/blob/unstable/src/sds.c#L120 /* SDSLib, A C dynami ...

随机推荐

  1. 转:【衬线字体与无衬线字体】font-family之Serif和Sans-Serif

    CSS的font-family(字体系列)的值有许多,如Arial,Georgia,宋体,幼圆等. 一般可以分为两种,衬线字体(serif)和无衬线字体(sans-serif). 如果字体的笔画有末端 ...

  2. 模板引擎(smarty)知识点总结四

    /*   smarty 引入对象 */ require_once 'libs/Smarty.class.php';  require 'MySmarty.class.php';  $msma = ne ...

  3. day3用户交互,格式化输出,数据类型,流程控制

    上节课复习: 1.运行python程序的三步骤:python test.py 1.先启动python解释器 2.将test.py的内容当作普通的字符读入内存 3.python解释器解释执行刚刚读入内存 ...

  4. Application-identifier entitlement does not match问题的解决

    以下是一个老外的回答: This happened to me after installing a build from TestFlight and overwriting it with the ...

  5. MySQL5.7的安装配置

    双击进入安装,如下图: 2 点击上图红框“Install MySQL Products”进入安装界面,如下图: 3 根据上图当中第一步骤与第二步骤,进入下图: 4 进入设置界面,如下图: 5 在原来旧 ...

  6. cpu信息查看

    # 总核数 = 物理CPU个数 X 每颗物理CPU的核数 # 总逻辑CPU数 = 物理CPU个数 X 每颗物理CPU的核数 X 超线程数 # 查看物理CPU个数 cat /proc/cpuinfo| ...

  7. hdu 1226 超级密码

    超级密码 Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Problem D ...

  8. 在windows右键菜单中加入自己的程序 [转载]

    原文链接: http://blog.csdn.net/marklr/article/details/4006356  在windows右键菜单中加入自己的程序 标签: windowsattribute ...

  9. 【友情链接】各位dalao的博客

    同省神犇 HA队长 __stdcall HA chty_syq为文文讲过字符串 HA cdcq为文文讲过后缀数组① ② Bluesky007超强的 外省神犇 知名OIer黄学长 一个可爱的蓝孩子qwq ...

  10. HDU - 2604 Queuing(递推式+矩阵快速幂)

    Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...