这是CS190.1x第一次作业,主要教你如何使用numpy。numpy可以说是python科学计算的基础包了,用途非常广泛。相关ipynb文件见我github

这次作业主要分成5个部分,分别是:数学复习,numpy介绍,numpy和线性代数,lambda表达式和CTR预览(lab4的内容,不明白有什么意义,略过)

Part 1 Math review

第一部分主要介绍了线性代数的知识,包括向量的加减乘除和矩阵的加减乘除,代码也不用贴了。

Part 2 NumPy

numpy是python用于向量计算的包,它对向量和矩阵计算提供了非常好的接口,而且对速度和内存的优化也做的非常好。本部分会详细的介绍numpy。

Scalar multiplication

向量与常数相乘

# It is convention to import NumPy with the alias np
import numpy as np
# TODO: Replace <FILL IN> with appropriate code
# Create a numpy array with the values 1, 2, 3
simpleArray = np.array([1,2,3])
# Perform the scalar product of 5 and the numpy array
timesFive = 5 * simpleArray
print simpleArray
print timesFive

Element-wise multiplication and dot product

numpy提供了元素相乘和点乘

# TODO: Replace <FILL IN> with appropriate code
# Create a ndarray based on a range and step size.
u = np.arange(0, 5, .5)
v = np.arange(5, 10, .5) elementWise = u * v
dotProduct = np.dot(u,v)
print 'u: {0}'.format(u)
print 'v: {0}'.format(v)
print '\nelementWise\n{0}'.format(elementWise)
print '\ndotProduct\n{0}'.format(dotProduct)

Matrix math

numpy提供了矩阵的转置,点乘,求逆运算

# TODO: Replace <FILL IN> with appropriate code
from numpy.linalg import inv A = np.matrix([[1,2,3,4],[5,6,7,8]])
print 'A:\n{0}'.format(A)
# Print A transpose
print '\nA transpose:\n{0}'.format(A.T) # Multiply A by A transpose
AAt = A.dot(np.matrix.transpose(A))
print '\nAAt:\n{0}'.format(AAt) # Invert AAt with np.linalg.inv()
AAtInv = inv(AAt)
print '\nAAtInv:\n{0}'.format(AAtInv) # Show inverse times matrix equals identity
# We round due to numerical precision
print '\nAAtInv * AAt:\n{0}'.format((AAtInv * AAt).round(4))

Part 3 Additional NumPy and Spark linear algebra

Slices

熟悉python的list的人对这个应该不陌生。

# TODO: Replace <FILL IN> with appropriate code
features = np.array([1, 2, 3, 4])
print 'features:\n{0}'.format(features) # The last three elements of features
lastThree = features[-3:] print '\nlastThree:\n{0}'.format(lastThree)

Combining ndarray objects

这里介绍np.hstack():按照列来合并; np.vstack():按照行来合并。

# TODO: Replace <FILL IN> with appropriate code
zeros = np.zeros(8)
ones = np.ones(8)
print 'zeros:\n{0}'.format(zeros)
print '\nones:\n{0}'.format(ones) zerosThenOnes = np.hstack((zeros,ones)) # A 1 by 16 array
zerosAboveOnes = np.vstack((zeros,ones)) # A 2 by 8 array print '\nzerosThenOnes:\n{0}'.format(zerosThenOnes)
print '\nzerosAboveOnes:\n{0}'.format(zerosAboveOnes)

PySpark's DenseVector

PySpark提供了DenseVector(在pyspark.mllib.lianlg)来存储数组,这和numpy有点类似。

from pyspark.mllib.linalg import DenseVector
# TODO: Replace <FILL IN> with appropriate code
numpyVector = np.array([-3, -4, 5])
print '\nnumpyVector:\n{0}'.format(numpyVector) # Create a DenseVector consisting of the values [3.0, 4.0, 5.0]
myDenseVector = DenseVector([3.0, 4.0, 5.0])
# Calculate the dot product between the two vectors.
denseDotProduct = myDenseVector.dot(numpyVector) print 'myDenseVector:\n{0}'.format(myDenseVector)
print '\ndenseDotProduct:\n{0}'.format(denseDotProduct)

Part 4 Python lambda expressions

lambda之前出现了这么多次,不明白为啥才讲。。。囧。讲lambda的博客也是特别多,大家有兴趣可以搜搜看。

# Example function
def addS(x):
return x + 's'
print type(addS)
print addS
print addS('cat') # As a lambda
addSLambda = lambda x: x + 's'
print type(addSLambda)
print addSLambda
print addSLambda('cat') # TODO: Replace <FILL IN> with appropriate code
# Recall that: "lambda x, y: x + y" creates a function that adds together two numbers
multiplyByTen = lambda x: x * 10
print multiplyByTen(5) # Note that the function still shows its name as <lambda>
print '\n', multiplyByTen

lambda fewer steps than def

这里给出了lamda比def要灵活的例子

# Code using def that we will recreate with lambdas
def plus(x, y):
return x + y def minus(x, y):
return x - y functions = [plus, minus]
print functions[0](4, 5)
print functions[1](4, 5) # TODO: Replace <FILL IN> with appropriate code
# The first function should add two values, while the second function should subtract the second
# value from the first value.
lambdaFunctions = [lambda x,y : x+y , lambda x,y : x-y]
print lambdaFunctions[0](4, 5)
print lambdaFunctions[1](4, 5)

Lambda expression arguments

这一部分应该是说lambda的入参不一样,但是效果一样

# Examples.  Note that the spacing has been modified to distinguish parameters from tuples.

# One-parameter function
a1 = lambda x: x[0] + x[1]
a2 = lambda (x0, x1): x0 + x1
print 'a1( (3,4) ) = {0}'.format( a1( (3,4) ) )
print 'a2( (3,4) ) = {0}'.format( a2( (3,4) ) ) # Two-parameter function
b1 = lambda x, y: (x[0] + y[0], x[1] + y[1])
b2 = lambda (x0, x1), (y0, y1): (x0 + y0, x1 + y1)
print '\nb1( (1,2), (3,4) ) = {0}'.format( b1( (1,2), (3,4) ) )
print 'b2( (1,2), (3,4) ) = {0}'.format( b2( (1,2), (3,4) ) ) # TODO: Replace <FILL IN> with appropriate code
# Use both syntaxes to create a function that takes in a tuple of two values and swaps their order
# E.g. (1, 2) => (2, 1)
swap1 = lambda x: (x[1],x[0])
swap2 = lambda (x0, x1): (x1,x0)
print 'swap1((1, 2)) = {0}'.format(swap1((1, 2)))
print 'swap2((1, 2)) = {0}'.format(swap2((1, 2))) # Using either syntax, create a function that takes in a tuple with three values and returns a tuple
# of (2nd value, 3rd value, 1st value). E.g. (1, 2, 3) => (2, 3, 1)
swapOrder = lambda x:(x[1],x[2],x[0])
print 'swapOrder((1, 2, 3)) = {0}'.format(swapOrder((1, 2, 3))) # Using either syntax, create a function that takes in three tuples each with two values. The
# function should return a tuple with the values in the first position summed and the values in the
# second position summed. E.g. (1, 2), (3, 4), (5, 6) => (1 + 3 + 5, 2 + 4 + 6) => (9, 12)
sumThree = lambda x,y,z :(x[0]+y[0]+z[0],x[1]+y[1]+z[1])
print 'sumThree((1, 2), (3, 4), (5, 6)) = {0}'.format(sumThree((1, 2), (3, 4), (5, 6)))

Functional programming

# Create a class to give our examples the same syntax as PySpark
class FunctionalWrapper(object):
def __init__(self, data):
self.data = data
def map(self, function):
"""Call `map` on the items in `data` using the provided `function`"""
return FunctionalWrapper(map(function, self.data))
def reduce(self, function):
"""Call `reduce` on the items in `data` using the provided `function`"""
return reduce(function, self.data)
def filter(self, function):
"""Call `filter` on the items in `data` using the provided `function`"""
return FunctionalWrapper(filter(function, self.data))
def __eq__(self, other):
return (isinstance(other, self.__class__)
and self.__dict__ == other.__dict__)
def __getattr__(self, name): return getattr(self.data, name)
def __getitem__(self, k): return self.data.__getitem__(k)
def __repr__(self): return 'FunctionalWrapper({0})'.format(repr(self.data))
def __str__(self): return 'FunctionalWrapper({0})'.format(str(self.data)) # Map example # Create some data
mapData = FunctionalWrapper(range(5)) # Define a function to be applied to each element
f = lambda x: x + 3 # Imperative programming: loop through and create a new object by applying f
mapResult = FunctionalWrapper([]) # Initialize the result
for element in mapData:
mapResult.append(f(element)) # Apply f and save the new value
print 'Result from for loop: {0}'.format(mapResult) # Functional programming: use map rather than a for loop
print 'Result from map call: {0}'.format(mapData.map(f)) # Note that the results are the same but that the map function abstracts away the implementation
# and requires less code # TODO: Replace <FILL IN> with appropriate code
dataset = FunctionalWrapper(range(10)) # Multiply each element by 5
mapResult = dataset.map(lambda x :x*5)
# Keep the even elements
# Note that "x % 2" evaluates to the remainder of x divided by 2
filterResult = dataset.filter(lambda x : x%2==0)
# Sum the elements
reduceResult = dataset.reduce(lambda x,y: x+y) print 'mapResult: {0}'.format(mapResult)
print '\nfilterResult: {0}'.format(filterResult)
print '\nreduceResult: {0}'.format(reduceResult)

Composability

# Example of a mult-line expression statement
# Note that placing parentheses around the expression allow it to exist on multiple lines without
# causing a syntax error.
(dataset
.map(lambda x: x + 2)
.reduce(lambda x, y: x * y)) # TODO: Replace <FILL IN> with appropriate code
# Multiply the elements in dataset by five, keep just the even values, and sum those values
finalSum = dataset.map(lambda x :x*5).filter(lambda x : x%2==0).reduce(lambda x,y: x+y)
print finalSum

CS190.1x-ML_lab1_review_student的更多相关文章

  1. CS190.1x Scalable Machine Learning

    这门课是CS100.1x的后续课,看课程名字就知道这门课主要讲机器学习.难度也会比上一门课大一点.如果你对这门课感兴趣,可以看看我这篇博客,如果对PySpark感兴趣,可以看我分析作业的博客. Cou ...

  2. Introduction to Big Data with PySpark

    起因 大数据时代 大数据最近太热了,其主要有数据量大(Volume),数据类别复杂(Variety),数据处理速度快(Velocity)和数据真实性高(Veracity)4个特点,合起来被称为4V. ...

  3. Ubuntu16.04 802.1x 有线连接 输入账号密码,为什么连接不上?

    ubuntu16.04,在网络配置下找到802.1x安全性,输入账号密码,为什么连接不上?   这是系统的一个bug解决办法:假设你有一定的ubuntu基础,首先你先建立好一个不能用的协议,就是按照之 ...

  4. 解压版MySQL5.7.1x的安装与配置

    解压版MySQL5.7.1x的安装与配置 MySQL安装文件分为两种,一种是msi格式的,一种是zip格式的.如果是msi格式的可以直接点击安装,按照它给出的安装提示进行安装(相信大家的英文可以看懂英 ...

  5. RTImageAssets 自动生成 AppIcon 和 @2x @1x 比例图片

    下载地址:https://github.com/rickytan/RTImageAssets 此插件用来生成 @3x 的图片资源对应的 @2x 和 @1x 版本,只要拖拽高清图到 @3x 的位置上,然 ...

  6. 802.1x协议&eap类型

    EAP: 0,扩展认证协议 1,一个灵活的传输协议,用来承载任意的认证信息(不包括认证方式) 2,直接运行在数据链路层,如ppp或以太网 3,支持多种类型认证 注:EAP 客户端---服务器之间一个协 ...

  7. 脱壳脚本_手脱壳ASProtect 2.1x SKE -&gt; Alexey Solodovnikov

    脱壳ASProtect 2.1x SKE -> Alexey Solodovnikov 用脚本.截图 1:查壳 2:od载入 3:用脚本然后打开脚本文件Aspr2.XX_unpacker_v1. ...

  8. iOS图片攻略之:有3x自动生成2x 1x图片

       关键字:Xcode插件,生成图片资源 代码类库:其他(Others) GitHub链接:https://github.com/rickytan/RTImageAssets   本项目是一个 Xc ...

  9. Keil V4.72升级到V5.1X之后

    问题描述 Keil V4.72升级到V5.1x之后,原来编译通过的工程,出现了如下错误: .\Libraries\CMSIS\CM3\DeviceSupport\ST\STM32F10x\STM32f ...

随机推荐

  1. python函数-匿名函数

    1,匿名函数,故名思意,就是没有名字的函数. def fun(x): return x+x 上述代码的作用就是求x+x的和的函数.如果调用该函数的话,可以使用fun(1)即可.那么lambda函数和上 ...

  2. axios的get,post方法

    学习vue和nodejs的过程当中,涉及到了axios,今天为了测试,写了get和post两个方法来跟node服务端交互,结果因为header和参数弄了好久,在此记录一下,同时分享; 由于刚接触axi ...

  3. 转:sqlserver 临时表、表变量、CTE的比较

    1.临时表 1.1 临时表包括:以#开头的局部临时表,以##开头的全局临时表. 1.2 存储 不管是局部临时表,还是全局临时表,都会放存在tempdb数据库中. 1.3 作用域 局部临时表:对当前连接 ...

  4. 转:.Net内存泄露原因及解决办法

    1.    什么是.Net内存泄露 (1).NET 应用程序中的内存 您大概已经知道,.NET 应用程序中要使用多种类型的内存,包括:堆栈.非托管堆和托管堆.这里我们需要简单回顾一下. 以运行库为目标 ...

  5. abp框架里使用Redis

    首先引用 nuget Abp.RedisCache 在 appsettings.json加上Redis服务器配置 "RedisCache": { "ConnectionS ...

  6. .NET Core 获取配置文件appsettings.json 方法

    using Abp.Extensions; using Microsoft.Extensions.Configuration; using System; using System.Collectio ...

  7. Java 设计模式笔记

    0. 说明 转载 & 参考大部分内容 JAVA设计模式总结之23种设计模式 1. 什么是设计模式 设计模式(Design pattern)是一套被反复使用.多数人知晓的.经过分类编目的.代码设 ...

  8. Coursera-AndrewNg(吴恩达)机器学习笔记——第三周编程作业(逻辑回归)

    一. 逻辑回归 1.背景:使用逻辑回归预测学生是否会被大学录取. 2.首先对数据进行可视化,代码如下: pos = find(y==); %找到通过学生的序号向量 neg = find(y==); % ...

  9. PTA-B 1039 到底买不买 解题思路记录

    #include <cstdio> #include <string> #include <iostream> using namespace std; int m ...

  10. (转)Python3异常-AttributeError: module 'sys' has no attribute 'setdefaultencoding

    基于python3.6.1版本,在一个.py文件中,加入这3行:import requests, re, sysreload(sys)sys.setdefaultencoding("utf- ...