这是CS190.1x第一次作业,主要教你如何使用numpy。numpy可以说是python科学计算的基础包了,用途非常广泛。相关ipynb文件见我github

这次作业主要分成5个部分,分别是:数学复习,numpy介绍,numpy和线性代数,lambda表达式和CTR预览(lab4的内容,不明白有什么意义,略过)

Part 1 Math review

第一部分主要介绍了线性代数的知识,包括向量的加减乘除和矩阵的加减乘除,代码也不用贴了。

Part 2 NumPy

numpy是python用于向量计算的包,它对向量和矩阵计算提供了非常好的接口,而且对速度和内存的优化也做的非常好。本部分会详细的介绍numpy。

Scalar multiplication

向量与常数相乘

# It is convention to import NumPy with the alias np
import numpy as np
# TODO: Replace <FILL IN> with appropriate code
# Create a numpy array with the values 1, 2, 3
simpleArray = np.array([1,2,3])
# Perform the scalar product of 5 and the numpy array
timesFive = 5 * simpleArray
print simpleArray
print timesFive

Element-wise multiplication and dot product

numpy提供了元素相乘和点乘

# TODO: Replace <FILL IN> with appropriate code
# Create a ndarray based on a range and step size.
u = np.arange(0, 5, .5)
v = np.arange(5, 10, .5) elementWise = u * v
dotProduct = np.dot(u,v)
print 'u: {0}'.format(u)
print 'v: {0}'.format(v)
print '\nelementWise\n{0}'.format(elementWise)
print '\ndotProduct\n{0}'.format(dotProduct)

Matrix math

numpy提供了矩阵的转置,点乘,求逆运算

# TODO: Replace <FILL IN> with appropriate code
from numpy.linalg import inv A = np.matrix([[1,2,3,4],[5,6,7,8]])
print 'A:\n{0}'.format(A)
# Print A transpose
print '\nA transpose:\n{0}'.format(A.T) # Multiply A by A transpose
AAt = A.dot(np.matrix.transpose(A))
print '\nAAt:\n{0}'.format(AAt) # Invert AAt with np.linalg.inv()
AAtInv = inv(AAt)
print '\nAAtInv:\n{0}'.format(AAtInv) # Show inverse times matrix equals identity
# We round due to numerical precision
print '\nAAtInv * AAt:\n{0}'.format((AAtInv * AAt).round(4))

Part 3 Additional NumPy and Spark linear algebra

Slices

熟悉python的list的人对这个应该不陌生。

# TODO: Replace <FILL IN> with appropriate code
features = np.array([1, 2, 3, 4])
print 'features:\n{0}'.format(features) # The last three elements of features
lastThree = features[-3:] print '\nlastThree:\n{0}'.format(lastThree)

Combining ndarray objects

这里介绍np.hstack():按照列来合并; np.vstack():按照行来合并。

# TODO: Replace <FILL IN> with appropriate code
zeros = np.zeros(8)
ones = np.ones(8)
print 'zeros:\n{0}'.format(zeros)
print '\nones:\n{0}'.format(ones) zerosThenOnes = np.hstack((zeros,ones)) # A 1 by 16 array
zerosAboveOnes = np.vstack((zeros,ones)) # A 2 by 8 array print '\nzerosThenOnes:\n{0}'.format(zerosThenOnes)
print '\nzerosAboveOnes:\n{0}'.format(zerosAboveOnes)

PySpark's DenseVector

PySpark提供了DenseVector(在pyspark.mllib.lianlg)来存储数组,这和numpy有点类似。

from pyspark.mllib.linalg import DenseVector
# TODO: Replace <FILL IN> with appropriate code
numpyVector = np.array([-3, -4, 5])
print '\nnumpyVector:\n{0}'.format(numpyVector) # Create a DenseVector consisting of the values [3.0, 4.0, 5.0]
myDenseVector = DenseVector([3.0, 4.0, 5.0])
# Calculate the dot product between the two vectors.
denseDotProduct = myDenseVector.dot(numpyVector) print 'myDenseVector:\n{0}'.format(myDenseVector)
print '\ndenseDotProduct:\n{0}'.format(denseDotProduct)

Part 4 Python lambda expressions

lambda之前出现了这么多次,不明白为啥才讲。。。囧。讲lambda的博客也是特别多,大家有兴趣可以搜搜看。

# Example function
def addS(x):
return x + 's'
print type(addS)
print addS
print addS('cat') # As a lambda
addSLambda = lambda x: x + 's'
print type(addSLambda)
print addSLambda
print addSLambda('cat') # TODO: Replace <FILL IN> with appropriate code
# Recall that: "lambda x, y: x + y" creates a function that adds together two numbers
multiplyByTen = lambda x: x * 10
print multiplyByTen(5) # Note that the function still shows its name as <lambda>
print '\n', multiplyByTen

lambda fewer steps than def

这里给出了lamda比def要灵活的例子

# Code using def that we will recreate with lambdas
def plus(x, y):
return x + y def minus(x, y):
return x - y functions = [plus, minus]
print functions[0](4, 5)
print functions[1](4, 5) # TODO: Replace <FILL IN> with appropriate code
# The first function should add two values, while the second function should subtract the second
# value from the first value.
lambdaFunctions = [lambda x,y : x+y , lambda x,y : x-y]
print lambdaFunctions[0](4, 5)
print lambdaFunctions[1](4, 5)

Lambda expression arguments

这一部分应该是说lambda的入参不一样,但是效果一样

# Examples.  Note that the spacing has been modified to distinguish parameters from tuples.

# One-parameter function
a1 = lambda x: x[0] + x[1]
a2 = lambda (x0, x1): x0 + x1
print 'a1( (3,4) ) = {0}'.format( a1( (3,4) ) )
print 'a2( (3,4) ) = {0}'.format( a2( (3,4) ) ) # Two-parameter function
b1 = lambda x, y: (x[0] + y[0], x[1] + y[1])
b2 = lambda (x0, x1), (y0, y1): (x0 + y0, x1 + y1)
print '\nb1( (1,2), (3,4) ) = {0}'.format( b1( (1,2), (3,4) ) )
print 'b2( (1,2), (3,4) ) = {0}'.format( b2( (1,2), (3,4) ) ) # TODO: Replace <FILL IN> with appropriate code
# Use both syntaxes to create a function that takes in a tuple of two values and swaps their order
# E.g. (1, 2) => (2, 1)
swap1 = lambda x: (x[1],x[0])
swap2 = lambda (x0, x1): (x1,x0)
print 'swap1((1, 2)) = {0}'.format(swap1((1, 2)))
print 'swap2((1, 2)) = {0}'.format(swap2((1, 2))) # Using either syntax, create a function that takes in a tuple with three values and returns a tuple
# of (2nd value, 3rd value, 1st value). E.g. (1, 2, 3) => (2, 3, 1)
swapOrder = lambda x:(x[1],x[2],x[0])
print 'swapOrder((1, 2, 3)) = {0}'.format(swapOrder((1, 2, 3))) # Using either syntax, create a function that takes in three tuples each with two values. The
# function should return a tuple with the values in the first position summed and the values in the
# second position summed. E.g. (1, 2), (3, 4), (5, 6) => (1 + 3 + 5, 2 + 4 + 6) => (9, 12)
sumThree = lambda x,y,z :(x[0]+y[0]+z[0],x[1]+y[1]+z[1])
print 'sumThree((1, 2), (3, 4), (5, 6)) = {0}'.format(sumThree((1, 2), (3, 4), (5, 6)))

Functional programming

# Create a class to give our examples the same syntax as PySpark
class FunctionalWrapper(object):
def __init__(self, data):
self.data = data
def map(self, function):
"""Call `map` on the items in `data` using the provided `function`"""
return FunctionalWrapper(map(function, self.data))
def reduce(self, function):
"""Call `reduce` on the items in `data` using the provided `function`"""
return reduce(function, self.data)
def filter(self, function):
"""Call `filter` on the items in `data` using the provided `function`"""
return FunctionalWrapper(filter(function, self.data))
def __eq__(self, other):
return (isinstance(other, self.__class__)
and self.__dict__ == other.__dict__)
def __getattr__(self, name): return getattr(self.data, name)
def __getitem__(self, k): return self.data.__getitem__(k)
def __repr__(self): return 'FunctionalWrapper({0})'.format(repr(self.data))
def __str__(self): return 'FunctionalWrapper({0})'.format(str(self.data)) # Map example # Create some data
mapData = FunctionalWrapper(range(5)) # Define a function to be applied to each element
f = lambda x: x + 3 # Imperative programming: loop through and create a new object by applying f
mapResult = FunctionalWrapper([]) # Initialize the result
for element in mapData:
mapResult.append(f(element)) # Apply f and save the new value
print 'Result from for loop: {0}'.format(mapResult) # Functional programming: use map rather than a for loop
print 'Result from map call: {0}'.format(mapData.map(f)) # Note that the results are the same but that the map function abstracts away the implementation
# and requires less code # TODO: Replace <FILL IN> with appropriate code
dataset = FunctionalWrapper(range(10)) # Multiply each element by 5
mapResult = dataset.map(lambda x :x*5)
# Keep the even elements
# Note that "x % 2" evaluates to the remainder of x divided by 2
filterResult = dataset.filter(lambda x : x%2==0)
# Sum the elements
reduceResult = dataset.reduce(lambda x,y: x+y) print 'mapResult: {0}'.format(mapResult)
print '\nfilterResult: {0}'.format(filterResult)
print '\nreduceResult: {0}'.format(reduceResult)

Composability

# Example of a mult-line expression statement
# Note that placing parentheses around the expression allow it to exist on multiple lines without
# causing a syntax error.
(dataset
.map(lambda x: x + 2)
.reduce(lambda x, y: x * y)) # TODO: Replace <FILL IN> with appropriate code
# Multiply the elements in dataset by five, keep just the even values, and sum those values
finalSum = dataset.map(lambda x :x*5).filter(lambda x : x%2==0).reduce(lambda x,y: x+y)
print finalSum

CS190.1x-ML_lab1_review_student的更多相关文章

  1. CS190.1x Scalable Machine Learning

    这门课是CS100.1x的后续课,看课程名字就知道这门课主要讲机器学习.难度也会比上一门课大一点.如果你对这门课感兴趣,可以看看我这篇博客,如果对PySpark感兴趣,可以看我分析作业的博客. Cou ...

  2. Introduction to Big Data with PySpark

    起因 大数据时代 大数据最近太热了,其主要有数据量大(Volume),数据类别复杂(Variety),数据处理速度快(Velocity)和数据真实性高(Veracity)4个特点,合起来被称为4V. ...

  3. Ubuntu16.04 802.1x 有线连接 输入账号密码,为什么连接不上?

    ubuntu16.04,在网络配置下找到802.1x安全性,输入账号密码,为什么连接不上?   这是系统的一个bug解决办法:假设你有一定的ubuntu基础,首先你先建立好一个不能用的协议,就是按照之 ...

  4. 解压版MySQL5.7.1x的安装与配置

    解压版MySQL5.7.1x的安装与配置 MySQL安装文件分为两种,一种是msi格式的,一种是zip格式的.如果是msi格式的可以直接点击安装,按照它给出的安装提示进行安装(相信大家的英文可以看懂英 ...

  5. RTImageAssets 自动生成 AppIcon 和 @2x @1x 比例图片

    下载地址:https://github.com/rickytan/RTImageAssets 此插件用来生成 @3x 的图片资源对应的 @2x 和 @1x 版本,只要拖拽高清图到 @3x 的位置上,然 ...

  6. 802.1x协议&eap类型

    EAP: 0,扩展认证协议 1,一个灵活的传输协议,用来承载任意的认证信息(不包括认证方式) 2,直接运行在数据链路层,如ppp或以太网 3,支持多种类型认证 注:EAP 客户端---服务器之间一个协 ...

  7. 脱壳脚本_手脱壳ASProtect 2.1x SKE -&gt; Alexey Solodovnikov

    脱壳ASProtect 2.1x SKE -> Alexey Solodovnikov 用脚本.截图 1:查壳 2:od载入 3:用脚本然后打开脚本文件Aspr2.XX_unpacker_v1. ...

  8. iOS图片攻略之:有3x自动生成2x 1x图片

       关键字:Xcode插件,生成图片资源 代码类库:其他(Others) GitHub链接:https://github.com/rickytan/RTImageAssets   本项目是一个 Xc ...

  9. Keil V4.72升级到V5.1X之后

    问题描述 Keil V4.72升级到V5.1x之后,原来编译通过的工程,出现了如下错误: .\Libraries\CMSIS\CM3\DeviceSupport\ST\STM32F10x\STM32f ...

随机推荐

  1. 闲聊jQuery(一)

    Write less, do more. 这便是jQuery的宗旨!jQuery,一个高效.精简并且功能丰富的 JavaScript 工具库. 想必,对于每一个前端开发者,一定用过jQuery吧!俗话 ...

  2. Webpack打包报"JavaScript heap out of memory"错误

    问题 开发项目有一段时间了,随着项目越来越大,打包的时间也相应的变长了,打包时的内存也增多了.这时候产生了一个问题,在发布项目的时候,会出现JavaScript heap out of memory错 ...

  3. SQL 中常用存储过程xp_cmdshell运行cmd命令 (转载)

    目的:使用SQL语句,在D盘创建一个文件夹myfile 首先查询系统配置 SELECT * FROM sys.configurations WHERE name='xp_cmdshell' OR na ...

  4. 无法将数据库从SINGLE_USER模式切换回MULTI_USER模式(Error 5064),及查找SQL Server数据库中用户spid(非SQL Server系统spid)的方法

    今天公司SQL Server数据库无意间变为SINGLE_USER模式了,而且使用如下语句切换回MULTI_USER失败: ALTER DATABASE [MyDB] SET MULTI_USER W ...

  5. FileStream常用的属性和方法:

    对流进行操作时要引用 using System.IO; 命名空间 FileStream常用的属性和方法: 属性: CanRead 判断当前流是否支持读取,返回bool值,True表示可以读取 CanW ...

  6. /etc/sudoers文件的分析以及sudo的高级用法

    高级用法总结: sudo命令是普通用户的提权操作指令.在权限控制中,我们可以使用/etc/sudoers文件中来进行设置.基本的用法比较熟悉.比如设置一个普通用户可拥有root用户的运行权限,那么设置 ...

  7. 如何使用EditPlus批量删除 带有某个字符的一行

    比如以下五行,我要将带有英文字母a的一行全部批量删除1234551243243123aa244123123981232137aa 2013-04-11 19:32   提问者采纳   我这里是英文版, ...

  8. BZOJ3173:[TJOI2013]最长上升子序列(Splay)

    Description 给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上升子序列长度是多少? Input 第一行一 ...

  9. pandas中的series数据类型

    import pandas as pd import numpy as np import names ''' 写在前面的话: 1.series与array类型的不同之处为series有索引,而另一个 ...

  10. FastJson遇见的问题或项目实战中优化的问题,看源码都可以解决

    1:感觉见鬼了一般存储JSONObject中的字段竟然不见了? JSONObject object=new JSONObject(); Map fields = new HashMap(); fiel ...