Two Rabbits

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 505    Accepted Submission(s): 260

Problem Description
Long long ago, there lived two rabbits Tom and Jerry in the forest. On a sunny afternoon, they planned to play a game with some stones. There were n stones on the ground and they were arranged as a clockwise ring. That is to say, the first stone was adjacent to the second stone and the n-th stone, and the second stone is adjacent to the first stone and the third stone, and so on. The weight of the i-th stone is ai.

The rabbits jumped from one stone to another. Tom always jumped clockwise, and Jerry always jumped anticlockwise.

At the beginning, the rabbits both choose a stone and stand on it. Then at each turn, Tom should choose a stone which have not been stepped by itself and then jumped to it, and Jerry should do the same thing as Tom, but the jumping direction is anti-clockwise.

For some unknown reason, at any time , the weight of the two stones on which the two rabbits stood should be equal. Besides, any rabbit couldn't jump over a stone which have been stepped by itself. In other words, if the Tom had stood on the second stone, it cannot jump from the first stone to the third stone or from the n-the stone to the 4-th stone.

Please note that during the whole process, it was OK for the two rabbits to stand on a same stone at the same time.

Now they want to find out the maximum turns they can play if they follow the optimal strategy.

 
Input
The input contains at most 20 test cases.
For each test cases, the first line contains a integer n denoting the number of stones.
The next line contains n integers separated by space, and the i-th integer ai denotes the weight of the i-th stone.(1 <= n <= 1000, 1 <= ai <= 1000)
The input ends with n = 0.
 
Output
For each test case, print a integer denoting the maximum turns.
 
Sample Input
1
1
4
1 1 2 1
6
2 1 1 2 1 3
0
 
Sample Output
1
4
5

Hint

For the second case, the path of the Tom is 1, 2, 3, 4, and the path of Jerry is 1, 4, 3, 2.
For the third case, the path of Tom is 1,2,3,4,5 and the path of Jerry is 4,3,2,1,5.

 
Source
 
Recommend
liuyiding
 

答案竟然就是分成两部分以后的最长回文子串,

太难想到了,TAT

 /* ***********************************************
Author :kuangbin
Created Time :2013/9/15 星期日 15:20:03
File Name :2013杭州网络赛\1008.cpp
************************************************ */ #pragma comment(linker, "/STACK:1024000000,1024000000")
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
#define REP(I, N) for (int I=0;I<int(N);++I)
#define FOR(I, A, B) for (int I=int(A);I<int(B);++I)
#define DWN(I, B, A) for (int I=int(B-1);I>=int(A);--I)
#define REP_1(I, N) for (int I=1;I<=int(N);++I)
#define FOR_1(I, A, B) for (int I=int(A);I<=int(B);++I)
#define DWN_1(I, B, A) for (int I=int(B);I>=int(A);--I)
#define REP_C(I, N) for (int N____=int(N),I=0;I<N____;++I)
#define FOR_C(I, A, B) for (int B____=int(B),I=A;I<B____;++I)
#define DWN_C(I, B, A) for (int A____=int(A),I=B-1;I>=A____;--I)
#define REP_1_C(I, N) for (int N____=int(N),I=1;I<=N____;++I)
#define FOR_1_C(I, A, B) for (int B____=int(B),I=A;I<=B____;++I)
#define DWN_1_C(I, B, A) for (int A____=int(A),I=B;I>=A____;--I)
#define DO(N) while(N--)
#define DO_C(N) int N____ = N; while(N____--)
#define TO(i, a, b) int s_=a<b?1:-1,b_=b+s_;for(int i=a;i!=b_;i+=s_)
#define TO_1(i, a, b) int s_=a<b?1:-1,b_=b;for(int i=a;i!=b_;i+=s_)
#define SQZ(I, J, A, B) for (int I=int(A),J=int(B)-1;I<J;++I,--J)
#define SQZ_1(I, J, A, B) for (int I=int(A),J=int(B);I<=J;++I,--J) const int MAXN = ;
int a[MAXN];
int dp[MAXN][MAXN];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
while(scanf("%d",&n) == && n)
{
for(int i = ;i <= n;i++)
scanf("%d",&a[i]);
memset(dp,,sizeof(dp));
for(int i = ;i <= n;i++)dp[i][i] = ;
for(int k = ;k <= n;k++)
for(int i = ;i + k <= n;i++)
{
dp[i][i+k] = max(dp[i+][i+k],dp[i][i+k-]);
if(a[i] == a[i+k])dp[i][i+k] = max(dp[i][i+k],+dp[i+][i+k-]);
}
int ans = ;
for(int i = ;i <= n;i++)
ans = max(ans,dp[][i]+dp[i+][n]);
printf("%d\n",ans);
}
return ;
}

HDU 4745 Two Rabbits (2013杭州网络赛1008,最长回文子串)的更多相关文章

  1. HDU 4747 Mex (2013杭州网络赛1010题,线段树)

    Mex Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submis ...

  2. HDU 4741 Save Labman No.004 (2013杭州网络赛1004题,求三维空间异面直线的距离及最近点)

    Save Labman No.004 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  3. HDU 4739 Zhuge Liang's Mines (2013杭州网络赛1002题)

    Zhuge Liang's Mines Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  4. HDU 4738 Caocao's Bridges (2013杭州网络赛1001题,连通图,求桥)

    Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  5. 最长回文子串(百度笔试题和hdu 3068)

    版权所有.所有权利保留. 欢迎转载,转载时请注明出处: http://blog.csdn.net/xiaofei_it/article/details/17123559 求一个字符串的最长回文子串.注 ...

  6. hdu 3068 最长回文(manachar求最长回文子串)

    题目连接:hdu 3068 最长回文 解题思路:通过manachar算法求最长回文子串,如果用遍历的话绝对超时. #include <stdio.h> #include <strin ...

  7. HDU 4768 Flyer (2013长春网络赛1010题,二分)

    Flyer Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  8. HDU 4733 G(x) (2013成都网络赛,递推)

    G(x) Time Limit: 2000/500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  9. 2013杭州网络赛D题HDU 4741(计算几何 解三元一次方程组)

    Save Labman No.004 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

随机推荐

  1. iOS设置tableViewCell之间的间距(去掉UItableview headerview黏性)

    经常在项目中遇到自定义cell的情况,而且要求cell之间有间距,但是系统没有提供改变cell间距的方法,怎么办? 方法1:自定义cell的时候加一个背景View,使其距离contentView的上下 ...

  2. parallelogram

    The parallelogram law in inner product spaces Vectors involved in the parallelogram law. In a normed ...

  3. Linux Core Dump【转】

    转自:http://www.cnblogs.com/hazir/p/linxu_core_dump.html 当程序运行的过程中异常终止或崩溃,操作系统会将程序当时的内存状态记录下来,保存在一个文件中 ...

  4. IE浏览器如何调试Asp.net的 js代码

    不管我们开发什么项目,都需要使用调试.后端的调试比较简单.前端js调试稍微复杂了一点,但是也别怕,因为我们有很多调试前端js代码的浏览器工具.比如IE浏览器.firefox浏览器.chrome浏览器等 ...

  5. jQuery-介绍

    一:什么是jQuery jQuery 是一个 JavaScript 库. 二:安装 http://jquery.com/download/ http://jquery.cuishifeng.cn/ j ...

  6. MCS-51 单片机的中断系统

    MCS-51 单片机的中断系统 MCS-51中断系统:5个中断源(两个外部中断, 两个定时器, 一个串口),2个优先级 中断相关概念 中断:当CPU正在处理某件事情时,单片机外部或内部发生的某一紧急事 ...

  7. Database Course Summary 001

    0x01. 基本概念 SQL:Structured English Query Language 1. 数据 Data 数据(Data):描述事物的符号记录:数据内容是事物特性的反应或描述:数据是符号 ...

  8. ubuntu16。04LST配置nfs实现服务器和客户端共享文件

    NFS(network file system)网络文件系统可以实现不同主机与操作系统之间通过网络进行资源共享,此时一台PC充当服务器,若干台PC充当那客户端,具体如何配置请跟随我的步骤来做 1 下载 ...

  9. Smooth Face Tracking with OpenCV

    先马克下,回头跑试试:http://synaptitude.me/blog/smooth-face-tracking-using-opencv/ GitHub:https://github.com/S ...

  10. JS实现集合和ECMA6集合

    集合类似于数组,但是集合中的元素是唯一的,没有重复值的.就像你学高中数学的概念一样,集合还可以做很多比如,并集,交集,差集的计算.在ECMA6之前,JavaScript没有提供原生的Set类,所以只能 ...