Prime Switch

题目连接:

https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4924

Description

There are lamps (uniquely numbered from 1 to N) and K switches. Each switch has one prime number

written on it and it is connected to all lamps whose number is a multiple of that prime number. Pressing

a switch will toggle the condition of all lamps which are connected to the pressed switch; if the lamp

is off then it will be on, and vice versa. You can press only one switch at one time; in other words,

no two switches can be pressed together at the same time. If you want to press multiple switches, you

should do it one by one, i.e. allowing the affected lamps of the previous switch toggle their condition

first before pressing another switch.

Initially all the lamps are off. Your task is to determine the maximum number of lamps which can

be turned on by pressing one or more switches.

For example, let there be 10 lamps (1 . . . 10) and 2 switches which numbers are 2 and 5 as shown

in the following figure.

In this example:

• Pressing switch 2 will turn on 5 lamps: 2, 4, 6, 8, and 10.

• Pressing switch 5 will turn on 2 lamps: 5 and 10.

• Pressing switch 2 and 5 will turn on 5 lamps: 2, 4, 5, 6, and 8. Note that lamp number 10 will

be turned off as it is toggled twice, by switch 2 and switch 5 (off → on → off).

Among all possible switches combinations, the maximum number of lamps which can be turned on

in this example is 5.

Input

The first line of input contains an integer T (T ≤ 100) denoting the number of cases. Each case begins

with two integers in a line: N and K (1 ≤ K ≤ N ≤ 1, 000), denoting the number of lamps and

switches respectively. The next line contains K distinct prime numbers, each separated by a single

space, representing the switches number. You are guaranteed that the largest number among those

switches is no larger than N

Output

For each case, output ‘Case #X: Y ’, where X is the case number starts from 1 and Y is the maximum

number of lamps which can be turned on for that particular case.

Explanation for 2nd sample case:

You should press switch 2 and 7, such that 11 lamps will be turned on: 2, 4, 6, 7, 8, 10, 12, 16, 18,

20, and 21. There exist some other combinations which can turn on 11 lamps, but none can turn more

than 11 lamps on.

Explanation for 3rd sample case:

There is only one switch, and pressing it will turn 20 lamps on.

Explanation for 4th sample case:

Pressing all switches will turn 42 lamps on, and it is the maximum possible in this case

Sample Input

4

10 2

2 5

21 4

2 3 5 7

100 1

5

100 3

3 19 7

Sample Output

Case #1: 5

Case #2: 11

Case #3: 20

Case #4: 42

Hint

题意

你有n盏灯,有m个开关,开关上面都写着一个质数

那么这个开关就控制着上面写着的数字的倍数。

灯泡按奇数次就亮着,偶数次,就熄灭。

问你最好情况下,最优有多少个灯亮着。

题解:

对于小于等于31的素数,我们状压去跑dp,对于大于的,我们就贪心。

因为大于31的素数一定是不会冲突的,因为上面的数乘起来就大于1000了。

然后这样就行了。

代码

#include <bits/stdc++.h>

using namespace std;
const int maxn = 1000 + 15;
int N,K,pr[maxn],pre[maxn],prime[maxn],primelen,ha[maxn],tot,op[maxn],flag[maxn],temp[maxn];
vector < int > ap; void Init(){
memset( ha , -1 , sizeof( ha ) );
for(int i = 2 ; i < maxn ; ++ i) if(!pre[i]){
for(int j = i + i ; j < maxn ; j += i) pre[j] = 1;
prime[ primelen ++ ] = i;
}
} int solve( int bit ){
for(int i = 1 ; i <= N ; ++ i) flag[i] = 0;
for(int i = 0 ; i < tot ; ++ i) if( bit >> i & 1 ){
for(int j = op[i] ; j <= N ; j += op[i] ) flag[j] ^= 1;
}
for(auto it : ap){
int add = 0;
for(int i = it ; i <= N ; i += it) if( flag[i] == 0 ) ++ add ; else -- add;
if( add > 0 ) for(int i = it ; i <= N ; i += it) flag[i] ^= 1;
}
int rs = 0;
for(int i = 1 ; i <= N ; ++ i) rs += flag[i];
return rs;
} int main(int argc,char *argv[]){
int T,cas=0;
Init();
scanf("%d",&T);
while(T--){
scanf("%d%d",&N,&K);
for(int i = 0 ; i < K ; ++ i) scanf("%d" , pr + i);
sort( pr , pr + K );
tot = 0;ap.clear();
for(int i = 0 ; i < K ; ++ i) if( pr[i] <= 31 ) op[tot ++ ] = pr[i];else ap.push_back( pr[i] );
int mx = 0;
for(int i = 0 ; i < (1 << tot) ; ++ i) mx = max( mx , solve( i ) );
printf("Case #%d: %d\n", ++ cas , mx);
}
return 0;
}

UVALive 6912 Prime Switch 状压DP的更多相关文章

  1. UVaLive 6625 Diagrams & Tableaux (状压DP 或者 DFS暴力)

    题意:给一个的格子图,有 n 行单元格,每行有a[i]个格子,要求往格子中填1~m的数字,要求每个数字大于等于左边的数字,大于上边的数字,问有多少种填充方法. 析:感觉像个DP,但是不会啊...就想暴 ...

  2. UVALive - 6912 Prime Switch (状压DP)

    题目链接:传送门 [题意]有n个灯,m个开关,灯的编号从1~n,每个开关上有一个质数,这个开关同时控制编号为这个质数的倍数的灯,问最多有多少灯打开. [分析]发现小于根号1000的质数有10个左右,然 ...

  3. UVALive 6912 Prime Switch 暴力枚举+贪心

    题目链接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show ...

  4. 状压DP uvalive 6560

    // 状压DP uvalive 6560 // 题意:相邻格子之间可以合并,合并后的格子的值是之前两个格子的乘积,没有合并的为0,求最大价值 // 思路: // dp[i][j]:第i行j状态下的值 ...

  5. UVAlive 6560 - The Urge to Merge(状压dp)

    LA 6560 - The Urge to Merge option=com_onlinejudge&Itemid=8&page=show_problem&problem=45 ...

  6. LGTB与序列 状压dp

    考试一看我就想到了状压dp.当时没有想到素数,以为每一位只有0~9这些数,就开始压了.后来发现是小于30,然后改到了15,发现数据一点不给面子,一个小点得数都没有,完美爆零.. 考虑到bi最多变成58 ...

  7. Codeforces 895C - Square Subsets 状压DP

    题意: 给了n个数,要求有几个子集使子集中元素的和为一个数的平方. 题解: 因为每个数都可以分解为质数的乘积,所有的数都小于70,所以在小于70的数中一共只有19个质数.可以使用状压DP,每一位上0表 ...

  8. 洛谷P2761 软件补丁问题(状压dp)

    传送门 啊咧……这题不是网络流二十四题么……为啥是个状压dp…… 把每一个漏洞看成一个状态,直接硬上状压dp 然后因为有后效型,得用spfa //minamoto #include<iostre ...

  9. HDU-3681-Prison Break(BFS+状压DP+二分)

    Problem Description Rompire is a robot kingdom and a lot of robots live there peacefully. But one da ...

随机推荐

  1. bzoj千题计划188:bzoj1923: [Sdoi2010]外星千足虫 (高斯—若尔当消元法解异或方程组)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1923 #include<cstdio> #include<cstring> ...

  2. Codeforces Round #519 题解

    A. Elections 题意概述 给出 \(a_1, \ldots, a_n\),求最小的 \(k (k \ge \max a_i)\), 使得 \(\sum_{i=1}^n a_i < \s ...

  3. css框架,一把锋利的剑

    CSS 框架是一系列 CSS 文件的集合体,包含了基本的元素重置,页面排版.网格布局.表单样式.通用规则等代码块,用于简化web前端开发的工作,提高工作效率. 产生原因 互联网行业已经发展了多年,浏览 ...

  4. HDU 1501 Zipper 字符串

    题目大意:输入有一个T,表示有T组测试数据,然后输入三个字符串,问第三个字符串能否由第一个和第二个字符串拼接而来,拼接的规则是第一个和第二个字符串在新的字符串中的前后的相对的顺序不能改变,问第三个字符 ...

  5. 用于阻止缓冲区溢出攻击的 Linux 内核参数与 gcc 编译选项

    先来看看基于 Red Hat 与 Fedora 衍生版(例如 CentOS)系统用于阻止栈溢出攻击的内核参数,主要包含两项: kernel.exec-shield 可执行栈保护,字面含义比较“绕”, ...

  6. lucene查询索引之Query子类查询——(七)

    0.文档名字:(根据名字索引查询文档)

  7. Git 使用规范流程【转】

    转自:http://www.ruanyifeng.com/blog/2015/08/git-use-process.html 作者: 阮一峰 日期: 2015年8月 5日 团队开发中,遵循一个合理.清 ...

  8. linux下常用FTP命令 上传下载文件【转】

    1. 连接ftp服务器 格式:ftp [hostname| ip-address]a)在linux命令行下输入: ftp 192.168.1.1 b)服务器询问你用户名和密码,分别输入用户名和相应密码 ...

  9. 015_sublime插件管理及所有非常有用插件

    一. <1>按照这个进行Package Control的安装 https://packagecontrol.io/installation import urllib.request,os ...

  10. 七、vue语法补充二(动态组件 & 异步组件、访问元素 & 组件、混入)

    1..sync 修饰符 2.3.0+ 新增 vue 修饰符sync的功能是:当一个子组件改变了一个 prop 的值时,这个变化也会同步到父组件中所绑定.类似于v-model的效果 例子: this.$ ...