UVALive 6912 Prime Switch 状压DP
Prime Switch
题目连接:
Description
There are lamps (uniquely numbered from 1 to N) and K switches. Each switch has one prime number
written on it and it is connected to all lamps whose number is a multiple of that prime number. Pressing
a switch will toggle the condition of all lamps which are connected to the pressed switch; if the lamp
is off then it will be on, and vice versa. You can press only one switch at one time; in other words,
no two switches can be pressed together at the same time. If you want to press multiple switches, you
should do it one by one, i.e. allowing the affected lamps of the previous switch toggle their condition
first before pressing another switch.
Initially all the lamps are off. Your task is to determine the maximum number of lamps which can
be turned on by pressing one or more switches.
For example, let there be 10 lamps (1 . . . 10) and 2 switches which numbers are 2 and 5 as shown
in the following figure.
In this example:
• Pressing switch 2 will turn on 5 lamps: 2, 4, 6, 8, and 10.
• Pressing switch 5 will turn on 2 lamps: 5 and 10.
• Pressing switch 2 and 5 will turn on 5 lamps: 2, 4, 5, 6, and 8. Note that lamp number 10 will
be turned off as it is toggled twice, by switch 2 and switch 5 (off → on → off).
Among all possible switches combinations, the maximum number of lamps which can be turned on
in this example is 5.
Input
The first line of input contains an integer T (T ≤ 100) denoting the number of cases. Each case begins
with two integers in a line: N and K (1 ≤ K ≤ N ≤ 1, 000), denoting the number of lamps and
switches respectively. The next line contains K distinct prime numbers, each separated by a single
space, representing the switches number. You are guaranteed that the largest number among those
switches is no larger than N
Output
For each case, output ‘Case #X: Y ’, where X is the case number starts from 1 and Y is the maximum
number of lamps which can be turned on for that particular case.
Explanation for 2nd sample case:
You should press switch 2 and 7, such that 11 lamps will be turned on: 2, 4, 6, 7, 8, 10, 12, 16, 18,
20, and 21. There exist some other combinations which can turn on 11 lamps, but none can turn more
than 11 lamps on.
Explanation for 3rd sample case:
There is only one switch, and pressing it will turn 20 lamps on.
Explanation for 4th sample case:
Pressing all switches will turn 42 lamps on, and it is the maximum possible in this case
Sample Input
4
10 2
2 5
21 4
2 3 5 7
100 1
5
100 3
3 19 7
Sample Output
Case #1: 5
Case #2: 11
Case #3: 20
Case #4: 42
Hint
题意
你有n盏灯,有m个开关,开关上面都写着一个质数
那么这个开关就控制着上面写着的数字的倍数。
灯泡按奇数次就亮着,偶数次,就熄灭。
问你最好情况下,最优有多少个灯亮着。
题解:
对于小于等于31的素数,我们状压去跑dp,对于大于的,我们就贪心。
因为大于31的素数一定是不会冲突的,因为上面的数乘起来就大于1000了。
然后这样就行了。
代码
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1000 + 15;
int N,K,pr[maxn],pre[maxn],prime[maxn],primelen,ha[maxn],tot,op[maxn],flag[maxn],temp[maxn];
vector < int > ap;
void Init(){
memset( ha , -1 , sizeof( ha ) );
for(int i = 2 ; i < maxn ; ++ i) if(!pre[i]){
for(int j = i + i ; j < maxn ; j += i) pre[j] = 1;
prime[ primelen ++ ] = i;
}
}
int solve( int bit ){
for(int i = 1 ; i <= N ; ++ i) flag[i] = 0;
for(int i = 0 ; i < tot ; ++ i) if( bit >> i & 1 ){
for(int j = op[i] ; j <= N ; j += op[i] ) flag[j] ^= 1;
}
for(auto it : ap){
int add = 0;
for(int i = it ; i <= N ; i += it) if( flag[i] == 0 ) ++ add ; else -- add;
if( add > 0 ) for(int i = it ; i <= N ; i += it) flag[i] ^= 1;
}
int rs = 0;
for(int i = 1 ; i <= N ; ++ i) rs += flag[i];
return rs;
}
int main(int argc,char *argv[]){
int T,cas=0;
Init();
scanf("%d",&T);
while(T--){
scanf("%d%d",&N,&K);
for(int i = 0 ; i < K ; ++ i) scanf("%d" , pr + i);
sort( pr , pr + K );
tot = 0;ap.clear();
for(int i = 0 ; i < K ; ++ i) if( pr[i] <= 31 ) op[tot ++ ] = pr[i];else ap.push_back( pr[i] );
int mx = 0;
for(int i = 0 ; i < (1 << tot) ; ++ i) mx = max( mx , solve( i ) );
printf("Case #%d: %d\n", ++ cas , mx);
}
return 0;
}
UVALive 6912 Prime Switch 状压DP的更多相关文章
- UVaLive 6625 Diagrams & Tableaux (状压DP 或者 DFS暴力)
题意:给一个的格子图,有 n 行单元格,每行有a[i]个格子,要求往格子中填1~m的数字,要求每个数字大于等于左边的数字,大于上边的数字,问有多少种填充方法. 析:感觉像个DP,但是不会啊...就想暴 ...
- UVALive - 6912 Prime Switch (状压DP)
题目链接:传送门 [题意]有n个灯,m个开关,灯的编号从1~n,每个开关上有一个质数,这个开关同时控制编号为这个质数的倍数的灯,问最多有多少灯打开. [分析]发现小于根号1000的质数有10个左右,然 ...
- UVALive 6912 Prime Switch 暴力枚举+贪心
题目链接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show ...
- 状压DP uvalive 6560
// 状压DP uvalive 6560 // 题意:相邻格子之间可以合并,合并后的格子的值是之前两个格子的乘积,没有合并的为0,求最大价值 // 思路: // dp[i][j]:第i行j状态下的值 ...
- UVAlive 6560 - The Urge to Merge(状压dp)
LA 6560 - The Urge to Merge option=com_onlinejudge&Itemid=8&page=show_problem&problem=45 ...
- LGTB与序列 状压dp
考试一看我就想到了状压dp.当时没有想到素数,以为每一位只有0~9这些数,就开始压了.后来发现是小于30,然后改到了15,发现数据一点不给面子,一个小点得数都没有,完美爆零.. 考虑到bi最多变成58 ...
- Codeforces 895C - Square Subsets 状压DP
题意: 给了n个数,要求有几个子集使子集中元素的和为一个数的平方. 题解: 因为每个数都可以分解为质数的乘积,所有的数都小于70,所以在小于70的数中一共只有19个质数.可以使用状压DP,每一位上0表 ...
- 洛谷P2761 软件补丁问题(状压dp)
传送门 啊咧……这题不是网络流二十四题么……为啥是个状压dp…… 把每一个漏洞看成一个状态,直接硬上状压dp 然后因为有后效型,得用spfa //minamoto #include<iostre ...
- HDU-3681-Prison Break(BFS+状压DP+二分)
Problem Description Rompire is a robot kingdom and a lot of robots live there peacefully. But one da ...
随机推荐
- Git与GitHub学习笔记(二)提交的一些笔记
1.合并分支的使用一定要切换到master分支上去合并:git merge company2.切换分支的时候一定要提交干净本地分支的代码,才可以切换分支,否则提示错误信息: 3.这时候我们做的就是提交 ...
- 利用fiddler来模拟低速环境
为了让我们的站点拥有更好的用户体验,更短的加载时间,我们会“按需加载”页面的资源. 在调试程序的时候,我们希望能有一个低速率的网络环境来模拟真实线上的环境,这个时候fiddler(下载fiddler请 ...
- Java内存模型-final域的内存语义
一 引言 说到final你肯定知道它是Java中的关键字,那么它所在Java中的作用你知道吗?不知道的话,请前往这篇了解下https://www.cnblogs.com/yuanfy008/p/802 ...
- jquery-easyui:如何设置组件属性
在这里以面板为例: $().ready(function() { $('#menu').tree({ url : '/menu', onClick : function(node) { $('#cen ...
- python抓取内涵段子文章
# coding:utf-8 from urllib.request import urlretrieve import threading import requests from bs4 impo ...
- enum 关键字
java.lang.Enum.java enum :枚举类型当你需要创建一个整型常量集,但是这些枚举值并不会必然地将其自身的取值限制在这个常量的范围之内,这种情况可以用枚举 package objec ...
- Vue 虚拟Dom 及 部分生命周期初探
踏入前端,步入玄学 17年底至18年初附带做了vue的一些框架搭建,中途断断续续用了部分vue,时隔几个月后的工作又拾起vue,对于一些原理性的知识淡忘了,正值这段时间使用中遇到了一些坑,又拨了部分代 ...
- DDD领域模型企业级系统Linq的CRUD(四)
建造一个Product Module类: ProductDBContextDataContext dbcontext = new ProductDBContextDataContext(); publ ...
- Java List 转 String
JAVA中List转换String,String转换List,Map转换String,String转换Map之间的转换工具类(调优)https://www.cnblogs.com/cn-wxw/p/6 ...
- Ubuntu 下 vi 输入方向键会变成 ABCD 的解决方法
Ubuntu 下 vi 输入方向键会变成 ABCD,这是 Ubuntu 预装的是 vim tiny 版本,安装 vim full 版本即可解决. 先卸载vim-tiny: $ sudo apt-get ...