Treasure Map


Time Limit: 2 Seconds      Memory Limit: 32768 KB

Your boss once had got many copies of a treasure map. Unfortunately, all the copies are now broken to many rectangular pieces, and what make it worse, he has lost some of the pieces. Luckily, it is possible to figure out the position of each piece in the original map. Now the boss asks you, the talent programmer, to make a complete treasure map with these pieces. You need to make only one complete map and it is not necessary to use all the pieces. But remember, pieces are not allowed to overlap with each other (See sample 2).

Input

The first line of the input contains an integer T (T <= 500), indicating the number of cases.

For each case, the first line contains three integers n m p (1 <= nm <= 30, 1 <= p <= 500), the width and the height of the map, and the number of pieces. Then p lines follow, each consists of four integers x1 y1 x2 y2 (0 <= x1 < x2 <= n, 0 <= y1 < y2 <= m), where (x1, y1) is the coordinate of the lower-left corner of the rectangular piece, and (x2, y2) is the coordinate of the upper-right corner in the original map.

Cases are separated by one blank line.

Output

If you can make a complete map with these pieces, output the least number of pieces you need to achieve this. If it is impossible to make one complete map, just output -1.

Sample Input

3
5 5 1
0 0 5 5 5 5 2
0 0 3 5
2 0 5 5 30 30 5
0 0 30 10
0 10 30 20
0 20 30 30
0 0 15 30
15 0 30 30

Sample Output

1
-1
2

Hint

For sample 1, the only piece is a complete map.

For sample 2, the two pieces may overlap with each other, so you can not make a complete treasure map.

For sample 3, you can make a map by either use the first 3 pieces or the last 2 pieces, and the latter approach one needs less pieces.

精确覆盖问题,使用DLX,将图按行向量压成一维就TLE了,按列向量压成一维却过了。。。不是很懂。。。

 //2017-04-15
#include <iostream>
#include <cstdio>
#include <cstring> using namespace std; const int N = ;
const int M = ;
const int maxnode = N*M;
int p; struct DLX
{
int n, m, sz;//n为矩阵行数,m为矩阵列数,sz为编号
int U[maxnode], D[maxnode], R[maxnode], L[maxnode], Row[maxnode], Col[maxnode];//U、D、R、L分别记录上下右左域。Row[i]表示编号为i的节点所在的行号,Col[i]表示编号为i的节点所在的列号
int H[N], S[M];//H[i]表示指向第i行最前边的节点,S[i]表示第i列1的个数
int ansd, ans[N]; void init(int nn, int mm)
{
n = nn; m = mm;
for(int i = ; i <= m; i++)
{
S[i] = ;//每一行1的个数初始化为0
U[i] = D[i] = i;//最上面的一行表头C,上下域初始化都为自身
L[i] = i-;//左边
R[i] = i+;//右边
}
R[m] = ; L[] = m;//头尾特殊处理
sz = m;
for(int i = ; i <= n; i++)H[i] = -;
}
void link(int r, int c)//第r行第c列为1
{
++S[Col[++sz] = c];//编号加1,记录列,所在的列1的个数加1
Row[sz] = r;//记录行
/*link上下域:*/
D[sz] = D[c];
U[D[c]] = sz;
U[sz] = c;
D[c] = sz;
/*link左右域:*/
if(H[r] < )H[r] = L[sz] = R[sz] = sz;
else{
R[sz] = R[H[r]];
L[R[H[r]]] = sz;
L[sz] = H[r];
R[H[r]] = sz;
}
} void Remove(int c)//删除第c列和其对应的行
{
L[R[c]] = L[c]; R[L[c]] = R[c];
for(int i = D[c]; i != c; i = D[i])
for(int j = R[i]; j != i; j = R[j])
{
U[D[j]] = U[j];
D[U[j]] = D[j];
--S[Col[j]];
}
} void resume(int c)//恢复第c列和其对应的行
{
for(int i = U[c]; i != c; i = U[i])
for(int j = L[i]; j != i; j = L[j])
++S[Col[U[D[j]]=D[U[j]]=j]];
L[R[c]] = R[L[c]] = c;
} void Dance(int d)//d表示选了多少行
{
if(ansd != - && ansd <= d)return;//剪枝
if(R[] == )//0号节点为head节点
{
if(ansd == -)ansd = d;
else if(ansd > d)ansd = d;
return;
}
int c = R[];
for(int i = R[]; i != ; i = R[i])//选出1最少的列
if(S[i] < S[c])c = i;
Remove(c);
for(int i = D[c]; i != c; i = D[i])//枚举第c列存在1节点的行,进行递归处理
{
ans[d] = Row[i];//表示第d行选Row[i]
for(int j = R[i]; j != i; j = R[j])Remove(Col[j]);//将这一行1节点所在的列都删除
Dance(d+);
for(int j = L[i]; j != i; j = L[j])resume(Col[j]);//恢复
}
resume(c);
}
}dlx; int main()
{
int n, m, T, x1, x2, y1, y2;
scanf("%d", &T);
while(T--)
{
scanf("%d%d%d", &n, &m, &p);
dlx.init(p, n*m);
for(int i = ; i <= p; i++)
{
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
for(int h = x1; h < x2; h++)
for(int l = y1+; l <= y2; l++)
dlx.link(i, h*m+l);
}
dlx.ansd = -;
dlx.Dance();
printf("%d\n", dlx.ansd);
} return ;
}

ZOJ3209(KB3-B DLX)的更多相关文章

  1. zoj3209(DLX)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=16234 题意:给p张小纸片, 问能不能选出尽量少的一部分或全部数量 ...

  2. DLX 舞蹈链 精确覆盖 与 重复覆盖

    精确覆盖问题:给定一个由0-1组成的矩阵,是否能找到一个行的集合,使得集合中每一列都恰好包含一个1 还有重复覆盖问题 dancing links 是 一种数据结构,用来优化搜索,不算是一种算法.(双向 ...

  3. ZOJ3209 Treasure Map —— Danc Links 精确覆盖

    题目链接:https://vjudge.net/problem/ZOJ-3209 Treasure Map Time Limit: 2 Seconds      Memory Limit: 32768 ...

  4. DLX (poj 3074)

    题目:Sudoku 匪夷所思的方法,匪夷所思的速度!!! https://github.com/ttlast/ACM/blob/master/Dancing%20Link%20DLX/poj%2030 ...

  5. HDU 3957 Street Fighter(搜索、DLX、重复覆盖+精确覆盖)

    很久以前就看到的一个经典题,一直没做,今天拿来练手.街霸 给n<=25个角色,每个角色有 1 or 2 个版本(可以理解为普通版以及爆发版),每个角色版本可以KO掉若干人. 问最少选多少个角色( ...

  6. 数独求解 DFS && DLX

    题目:Sudoku 题意:求解数独.从样例和结果来看应该是简单难度的数独 思路:DFS 设置3个数组,row[i][j] 判断第i行是否放了j数字,col[i][j] 判断第i列是否放了j数字.squ ...

  7. DLX模型问题

    问题:sevenzero liked Warcraft very much, but he haven't practiced it for several years after being add ...

  8. HDU 4069 Squiggly Sudoku(DLX)(The 36th ACM/ICPC Asia Regional Fuzhou Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4069 Problem Description Today we play a squiggly sud ...

  9. HDU 5046 Airport(dlx)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5046 题意:n个城市修建m个机场,使得每个城市到最近进场的最大值最小. 思路:二分+dlx搜索判定. ...

随机推荐

  1. Linux学习笔记-基本操作4

    1. gdb调试2. makefile的编写3. 系统IO函数 1. gdb调试:        1. 启动gdb + 可执行文件        2. 查看代码:                l== ...

  2. 异步三部曲之promise

    概述 这是我看你不知道的JavaScript(中卷)的读书笔记,供以后开发时参考,相信对其他人也有用. 例子 首先来看一个例子,如果我们要异步获取x和y,然后把他们打印出来,那么用回调可以编写代码如下 ...

  3. 上下文相关的GMM-HMM声学模型续:参数共享

    一.三音素建模存在的问题 问题一:很多三音素在训练数据中没有出现(尤其跨词三音素) 问题二:在训练数据中出现过的三音素有相当一部分出现的频次较少 因此,三音素模型训练时存在较严重的数据不足问题 二.参 ...

  4. D01-R语言基础学习

    R语言基础学习——D01 20190410内容纲要: 1.R的下载与安装 2.R包的安装与使用方法 (1)查看已安装的包 (2)查看是否安装过包 (3)安装包 (4)更新包 3.结果的重用 4.R处理 ...

  5. python3 调用 salt-api

    使用python3调用 salt-api 在项目中我们不能使用命令行的模式去调用salt-api,所以我们可以写一个基于salt-api的类,方便项目代码的调用.在这里特别附上两种方式实现的pytho ...

  6. 这两周服务器被攻击,封锁了600多个IP地址段后今天服务器安静多了

    这两周服务器被攻击,封锁了600多个IP地址段后今天服务器安静多了 建议大家在自己的服务器上也封杀这些瘪三的地址 iptables -I INPUT -s 123.44.55.0/24 -j DROP ...

  7. Git使用(3)

    1.查看本地和远程分支 git branch -a 删除本地分支 git branch -D branchName(D要大写) 删除远程分支 git push origin :branchName 2 ...

  8. python 继承 多态

    python 的继承 #-*- coding:utf-8 -*-class A(object): def __init__(self): print('A:我是肯定会执行的!!') def fun(s ...

  9. 为 git 设置 http 代理

    最近基于 PDFium 项目做一些东西.之前得了代码,今天想要更新到最新的,发现怎么都 pull 不下来.后来想起来,可能是 git 没有使用代理的原因.于是添加代理,果然更新成功. 在 git ba ...

  10. Shell的并发

    #!/bin/bash ./step1.sh & >中文 i=$! ./step2.sh & >西王 j=$! wait #echo ${i} #echo ${j} ech ...