A simple Gaussian elimination problem.(hdu4975)网络流+最大流
A simple Gaussian elimination problem.
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 728 Accepted Submission(s):
241
several rows and columns, randomly wrote numbers on each elements of the table.
Then he counted the sum of each row and column. Since he thought the map will be
useless after he got the sums, he destroyed the table after that.
However
Dragon's mom came back and found what he had done. She would give dragon a feast
if Dragon could reconstruct the table, otherwise keep Dragon hungry. Dragon is
so young and so simple so that the original numbers in the table are one-digit
number (e.g. 0-9).
Could you help Dragon to do that?
T(<=30), the number of test cases. Following T blocks, each block describes
one test case.
There are three lines for each block. The first line
contains two integers N(<=500) and M(<=500), showing the number of rows
and columns.
The second line contains N integer show the sum of each
row.
The third line contains M integer show the sum of each column.
start with "Case #i: ", with i implying the case number. For each case, if we
cannot get the original table, just output: "So naive!", else if we can
reconstruct the table by more than one ways, you should output one line contains
only: "So young!", otherwise (only one way to reconstruct the table) you should
output: "So simple!".
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
#include <numeric>
using namespace std;
typedef long long LL;
const int MAXN = ;
const int MAXV = MAXN << ;
const int MAXE = * MAXN * MAXN;
const int INF = 0x3f3f3f3f;
struct ISAP
{
int head[MAXV], cur[MAXV], gap[MAXV], dis[MAXV], pre[MAXV];
int to[MAXE], next[MAXE], flow[MAXE];
int n, ecnt, st, ed;
void init(int n)
{
this->n = n;
memset(head + , -, n * sizeof(int));
ecnt = ;
}
void add_edge(int u, int v, int c)
{
to[ecnt] = v;
flow[ecnt] = c;
next[ecnt] = head[u];
head[u] = ecnt++;
to[ecnt] = u;
flow[ecnt] = ;
next[ecnt] = head[v];
head[v] = ecnt++; }
void bfs()
{
memset(dis + , 0x3f, n * sizeof(int));
queue<int> que;
que.push(ed);
dis[ed] = ;
while(!que.empty())
{
int u = que.front();
que.pop();
gap[dis[u]]++;
for(int p = head[u]; ~p; p = next[p])
{
int v = to[p];
if(flow[p ^ ] && dis[u] + < dis[v])
{
dis[v] = dis[u] + ;
que.push(v);
}
}
}
} int max_flow(int ss, int tt)
{
st = ss, ed = tt;
int ans = , minFlow = INF;
for(int i = ; i <= n; ++i)
{
cur[i] = head[i];
gap[i] = ; }
bfs();
int u = pre[st] = st;
while(dis[st] < n)
{
bool flag = false;
for(int &p = cur[u]; ~p; p = next[p])
{
int v = to[p];
if(flow[p] && dis[u] == dis[v] + )
{
flag = true;
minFlow = min(minFlow, flow[p]);
pre[v] = u;
u = v;
if(u == ed)
{
ans += minFlow;
while(u != st)
{
u = pre[u];
flow[cur[u]] -= minFlow;
flow[cur[u] ^ ] += minFlow; }
minFlow = INF; }
break; } }
if(flag) continue;
int minDis = n - ;
for(int p = head[u]; ~p; p = next[p])
{
int &v = to[p];
if(flow[p] && dis[v] < minDis)
{
minDis = dis[v];
cur[u] = p; }
}
if(--gap[dis[u]] == ) break;
++gap[dis[u] = minDis + ];
u = pre[u]; }
return ans; } int stk[MAXV], top;
bool sccno[MAXV], vis[MAXV];
bool dfs(int u, int f, bool flag)
{
vis[u] = true;
stk[top++] = u;
for(int p = head[u]; ~p; p = next[p]) if(flow[p])
{
int v = to[p];
if(v == f) continue;
if(!vis[v])
{
if(dfs(v, u, flow[p ^ ])) return true; }
else if(!sccno[v]) return true; }
if(!flag)
{
while(true)
{
int x = stk[--top];
sccno[x] = true;
if(x == u) break; } }
return false; }
bool acycle()
{
memset(sccno + , , n * sizeof(bool));
memset(vis + , , n * sizeof(bool));
top = ;
return dfs(ed, , ); }
} G;
int row[MAXN], col[MAXN];
int mat[MAXN][MAXN];
int n, m, k, ss, tt;
void solve()
{
int sumr = accumulate(row + , row + n + , );
int sumc = accumulate(col + , col + m + , );
if(sumr != sumc)
{
puts("So naive!");
return ; }
int res = G.max_flow(ss, tt);
if(res != sumc)
{
puts("So naive!");
return ; }
if(G.acycle())
{
puts("So young!"); }
else
{
puts("So simple!");
} }
int main()
{
int T,Case;
scanf("%d",&T); for(Case=;Case<=T;Case++)
{
scanf("%d%d",&n,&m);
k=;
for(int i = ; i <= n; ++i) scanf("%d", &row[i]);
for(int i = ; i <= m; ++i) scanf("%d", &col[i]);
ss = n + m + , tt = n + m + ;
printf("Case #%d: ",Case);
G.init(tt);
for(int i = ; i <= n; ++i) G.add_edge(ss, i, row[i]);
for(int i = ; i <= m; ++i) G.add_edge(n + i, tt, col[i]);
for(int i = ; i <= n; ++i)
{
for(int j = ; j <= m; ++j)
{
mat[i][j] = G.ecnt ^ ;
G.add_edge(i, n + j, k);
}
}
solve(); }
}
A simple Gaussian elimination problem.(hdu4975)网络流+最大流的更多相关文章
- hdu 4975 A simple Gaussian elimination problem.(网络流,推断矩阵是否存在)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4975 Problem Description Dragon is studying math. One ...
- hdu4975 A simple Gaussian elimination problem.(正确解法 最大流+删边判环)(Updated 2014-10-16)
这题标程是错的,网上很多题解也是错的. http://acm.hdu.edu.cn/showproblem.php?pid=4975 2014 Multi-University Training Co ...
- HDOJ 4975 A simple Gaussian elimination problem.
和HDOJ4888是一样的问题,最大流推断多解 1.把ISAP卡的根本出不来结果,仅仅能把全为0或者全为满流的给特判掉...... 2.在残量网络中找大于2的圈要用一种类似tarjian的方法从汇点開 ...
- HDU 4975 A simple Gaussian elimination problem.
A simple Gaussian elimination problem. Time Limit: 1000ms Memory Limit: 65536KB This problem will be ...
- hdu4975 A simple Gaussian elimination problem.(最大流+判环)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4975 题意:和hdu4888基本一样( http://www.cnblogs.com/a-clown/ ...
- A simple Gaussian elimination problem.
hdu4975:http://acm.hdu.edu.cn/showproblem.php?pid=4975 题意:给你一个n*m的矩阵,矩阵中的元素都是0--9,现在给你这个矩阵的每一行和每一列的和 ...
- hdu - 4975 - A simple Gaussian elimination problem.(最大流量)
意甲冠军:要在N好M行和列以及列的数字矩阵和,每个元件的尺寸不超过9,询问是否有这样的矩阵,是独一无二的N(1 ≤ N ≤ 500) , M(1 ≤ M ≤ 500). 主题链接:http://acm ...
- hdu 4975 A simple Gaussian elimination problem 最大流+找环
原题链接 http://acm.hdu.edu.cn/showproblem.php?pid=4975 这是一道很裸的最大流,将每个点(i,j)看作是从Ri向Cj的一条容量为9的边,从源点除法连接每个 ...
- hdoj 3549 Flow Problem【网络流最大流入门】
Flow Problem Time Limit: 5000/5000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Tota ...
随机推荐
- ASP.NET MVC 项目设置,移除多余的响应头,woff,woff2 字体文件请求处理
移除 X-AspNetMvc-Version 在 Global.asax 的 Application_Start添加代码 MvcHandler.DisableMvcResponseHeader = t ...
- C/S,B/S的应用和区别
·C/S——客户/服务器模式 特点:非对等相互作用——即客户与服务器出于不平等的地位 表现在:服务器用有客户所不具备的硬件和软件资源以及运算能力,服务器提供服务,客户请求服务. A.客户端与服务器的数 ...
- Python-使用PyQT生成图形界面
1.安装PyQT5以及QT Designer工具包 pip install PyQt5 pip install PyQt5-tools -i http://pypi.douban.com/simple ...
- 初识node.js(通过npm下载项目依赖的包的过程)
一.初识node.js 简单的说Node.js 就是运行在服务器端的JavaScript. Node.js 是一个基于Chrome JavaScript 运行时建立的一个平台. Node.js是一个事 ...
- 跟着刚哥学习Spring框架--AOP(五)
AOP AOP(Aspect Oriented Programming),即面向切面编程,可以说是OOP(Object Oriented Programming,面向对象编程)的补充和完善.OOP引入 ...
- Git - 回滚与撤销
必要的概念 当前编辑界面:工作区(workspace) "git add"命令:将改动加入到缓存区(Index) "git commit"命令:提交代码到本地库 ...
- 7. Bagging & Random Forest
通过前面集成学习的介绍我们知道,欲得到泛化性能强的集成学习器,集成中个体学习器应尽量相互独立:虽然“独立”在现实任务中无法做到,但可以设法使基学习器尽可能具有较大差异. 1. Bagging 自助采样 ...
- 11-01 Java 开发工具 eclipse从下载、安装到实际使用的详细教程
Eclipse和MyEclipse简介 Eclipse是一种可扩展的开放源代码的IDE.起始于1999年4月,由OTI和IBM两家公司的IDE产品开发组组建. 2001年11月,IBM公司捐出价值4 ...
- (转)contextlib — 上下文管理器工具
原文:https://pythoncaff.com/docs/pymotw/contextlib-context-manager-tool/95 这是一篇社区协同翻译的文章,你可以点击右边区块信息里的 ...
- Linux下安装Nginx详细图解教程 (nginx-1.2.6)
什么是Nginx? Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器,在高连接并发的情况下N ...