A simple Gaussian elimination problem.

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 728 Accepted Submission(s):
241

Problem Description
Dragon is studying math. One day, he drew a table with
several rows and columns, randomly wrote numbers on each elements of the table.
Then he counted the sum of each row and column. Since he thought the map will be
useless after he got the sums, he destroyed the table after that.

However
Dragon's mom came back and found what he had done. She would give dragon a feast
if Dragon could reconstruct the table, otherwise keep Dragon hungry. Dragon is
so young and so simple so that the original numbers in the table are one-digit
number (e.g. 0-9).

Could you help Dragon to do that?

 
Input
The first line of input contains only one integer,
T(<=30), the number of test cases. Following T blocks, each block describes
one test case.

There are three lines for each block. The first line
contains two integers N(<=500) and M(<=500), showing the number of rows
and columns.

The second line contains N integer show the sum of each
row.

The third line contains M integer show the sum of each column.

 
Output
Each output should occupy one line. Each line should
start with "Case #i: ", with i implying the case number. For each case, if we
cannot get the original table, just output: "So naive!", else if we can
reconstruct the table by more than one ways, you should output one line contains
only: "So young!", otherwise (only one way to reconstruct the table) you should
output: "So simple!".
 
Sample Input
3
1 1
5
5
2 2
0 10
0 10
2 2
2 2
2 2
 
Sample Output
Case #1: So simple!
Case #2: So naive!
Case #3: So young!
 
 
网络流+最大流
题意:输入N*M的表格,在里面输入0-9内的数字,是的每行每列相加等于对应的值,如果表格唯一就输出Case #%d: So simple!;如果表格不唯一,则输出Case #%d: So young!;如果表格不存在,就输出Case #%d: So naive!
 
题目和hdu4888类似;
 
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
#include <numeric>
using namespace std;
typedef long long LL;
const int MAXN = ;
const int MAXV = MAXN << ;
const int MAXE = * MAXN * MAXN;
const int INF = 0x3f3f3f3f;
struct ISAP
{
int head[MAXV], cur[MAXV], gap[MAXV], dis[MAXV], pre[MAXV];
int to[MAXE], next[MAXE], flow[MAXE];
int n, ecnt, st, ed;
void init(int n)
{
this->n = n;
memset(head + , -, n * sizeof(int));
ecnt = ;
}
void add_edge(int u, int v, int c)
{
to[ecnt] = v;
flow[ecnt] = c;
next[ecnt] = head[u];
head[u] = ecnt++;
to[ecnt] = u;
flow[ecnt] = ;
next[ecnt] = head[v];
head[v] = ecnt++; }
void bfs()
{
memset(dis + , 0x3f, n * sizeof(int));
queue<int> que;
que.push(ed);
dis[ed] = ;
while(!que.empty())
{
int u = que.front();
que.pop();
gap[dis[u]]++;
for(int p = head[u]; ~p; p = next[p])
{
int v = to[p];
if(flow[p ^ ] && dis[u] + < dis[v])
{
dis[v] = dis[u] + ;
que.push(v);
}
}
}
} int max_flow(int ss, int tt)
{
st = ss, ed = tt;
int ans = , minFlow = INF;
for(int i = ; i <= n; ++i)
{
cur[i] = head[i];
gap[i] = ; }
bfs();
int u = pre[st] = st;
while(dis[st] < n)
{
bool flag = false;
for(int &p = cur[u]; ~p; p = next[p])
{
int v = to[p];
if(flow[p] && dis[u] == dis[v] + )
{
flag = true;
minFlow = min(minFlow, flow[p]);
pre[v] = u;
u = v;
if(u == ed)
{
ans += minFlow;
while(u != st)
{
u = pre[u];
flow[cur[u]] -= minFlow;
flow[cur[u] ^ ] += minFlow; }
minFlow = INF; }
break; } }
if(flag) continue;
int minDis = n - ;
for(int p = head[u]; ~p; p = next[p])
{
int &v = to[p];
if(flow[p] && dis[v] < minDis)
{
minDis = dis[v];
cur[u] = p; }
}
if(--gap[dis[u]] == ) break;
++gap[dis[u] = minDis + ];
u = pre[u]; }
return ans; } int stk[MAXV], top;
bool sccno[MAXV], vis[MAXV];
bool dfs(int u, int f, bool flag)
{
vis[u] = true;
stk[top++] = u;
for(int p = head[u]; ~p; p = next[p]) if(flow[p])
{
int v = to[p];
if(v == f) continue;
if(!vis[v])
{
if(dfs(v, u, flow[p ^ ])) return true; }
else if(!sccno[v]) return true; }
if(!flag)
{
while(true)
{
int x = stk[--top];
sccno[x] = true;
if(x == u) break; } }
return false; }
bool acycle()
{
memset(sccno + , , n * sizeof(bool));
memset(vis + , , n * sizeof(bool));
top = ;
return dfs(ed, , ); }
} G;
int row[MAXN], col[MAXN];
int mat[MAXN][MAXN];
int n, m, k, ss, tt;
void solve()
{
int sumr = accumulate(row + , row + n + , );
int sumc = accumulate(col + , col + m + , );
if(sumr != sumc)
{
puts("So naive!");
return ; }
int res = G.max_flow(ss, tt);
if(res != sumc)
{
puts("So naive!");
return ; }
if(G.acycle())
{
puts("So young!"); }
else
{
puts("So simple!");
} }
int main()
{
int T,Case;
scanf("%d",&T); for(Case=;Case<=T;Case++)
{
scanf("%d%d",&n,&m);
k=;
for(int i = ; i <= n; ++i) scanf("%d", &row[i]);
for(int i = ; i <= m; ++i) scanf("%d", &col[i]);
ss = n + m + , tt = n + m + ;
printf("Case #%d: ",Case);
G.init(tt);
for(int i = ; i <= n; ++i) G.add_edge(ss, i, row[i]);
for(int i = ; i <= m; ++i) G.add_edge(n + i, tt, col[i]);
for(int i = ; i <= n; ++i)
{
for(int j = ; j <= m; ++j)
{
mat[i][j] = G.ecnt ^ ;
G.add_edge(i, n + j, k);
}
}
solve(); }
}
 

A simple Gaussian elimination problem.(hdu4975)网络流+最大流的更多相关文章

  1. hdu 4975 A simple Gaussian elimination problem.(网络流,推断矩阵是否存在)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4975 Problem Description Dragon is studying math. One ...

  2. hdu4975 A simple Gaussian elimination problem.(正确解法 最大流+删边判环)(Updated 2014-10-16)

    这题标程是错的,网上很多题解也是错的. http://acm.hdu.edu.cn/showproblem.php?pid=4975 2014 Multi-University Training Co ...

  3. HDOJ 4975 A simple Gaussian elimination problem.

    和HDOJ4888是一样的问题,最大流推断多解 1.把ISAP卡的根本出不来结果,仅仅能把全为0或者全为满流的给特判掉...... 2.在残量网络中找大于2的圈要用一种类似tarjian的方法从汇点開 ...

  4. HDU 4975 A simple Gaussian elimination problem.

    A simple Gaussian elimination problem. Time Limit: 1000ms Memory Limit: 65536KB This problem will be ...

  5. hdu4975 A simple Gaussian elimination problem.(最大流+判环)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4975 题意:和hdu4888基本一样( http://www.cnblogs.com/a-clown/ ...

  6. A simple Gaussian elimination problem.

    hdu4975:http://acm.hdu.edu.cn/showproblem.php?pid=4975 题意:给你一个n*m的矩阵,矩阵中的元素都是0--9,现在给你这个矩阵的每一行和每一列的和 ...

  7. hdu - 4975 - A simple Gaussian elimination problem.(最大流量)

    意甲冠军:要在N好M行和列以及列的数字矩阵和,每个元件的尺寸不超过9,询问是否有这样的矩阵,是独一无二的N(1 ≤ N ≤ 500) , M(1 ≤ M ≤ 500). 主题链接:http://acm ...

  8. hdu 4975 A simple Gaussian elimination problem 最大流+找环

    原题链接 http://acm.hdu.edu.cn/showproblem.php?pid=4975 这是一道很裸的最大流,将每个点(i,j)看作是从Ri向Cj的一条容量为9的边,从源点除法连接每个 ...

  9. hdoj 3549 Flow Problem【网络流最大流入门】

    Flow Problem Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tota ...

随机推荐

  1. Servlet初步认知

    1 背景概述 在近期的公司项目开发的过程中,笔者初步学习Servlet的开发.配置与使用,本文主要介绍了Servlet的相关概念以及优势说明并附上笔者开发简单样例.今天将笔者学习的心得总结出来与大家分 ...

  2. linux03

    linux day31.正则表达式 \* ------重复0无数次 \+ ------重复1 无数次 ^ -------开头 $ -------结尾 | ------或 & ----- 与 ( ...

  3. css居中小结

    从css入门就开始接触,无所不在的,一直备受争议的居中问题. css居中分为水平居中和垂直居中,水平居中方式也较为常见和统一,垂直居中的方法就千奇百怪了. 博客原文地址:Claiyre的个人博客 ht ...

  4. ICMP与ping:投石问路的侦察兵

    1. ICMP 协议 ICMP全称Internet Control Message Protocol,就是互联网控制报文协议.ping命令就是基于它工作的. ICMP 报文是封装在 IP 包 里面的. ...

  5. JAVA动态代理和方法拦截(使用CGLib实现AOP、方法拦截、委托)

    AOP用CGLib更简便.更可控. 动态代理的实现非常优雅. 实体类: public class SampleClass { public String MyFunction1(String inpu ...

  6. 关于如何食用Xcode——用mac的小蒟蒻

    前言QwQ 对于一只用Mac的小蒟蒻,没有Dev_c++简直太难受了,用在线IDE写代码又没法保存,那么我们怎么办呢? 好在App Store里有这个好东西 所以我们今天来介绍一下 “如何使用Xcod ...

  7. 剑指offer三从头到尾打印链表

    一.题目: 输入一个链表,从尾到头打印链表每个节点的值. 二.解题方法: 方法一:采用递归的方式实现 方法二:借助堆栈的“后进先出”实现 import java.util.ArrayList; imp ...

  8. MySQL笔记(2)---InnoDB存储引擎

    1.前言 本节记录InnoDB的相关知识点. 2.InnoDB存储引擎简介 2.1版本 MySQL5.1开始,允许用动态方式加载引擎,这样存储引擎的更新可以不受MySQL数据库版本的限制.下面是各个I ...

  9. Zookeeper--0200--安装与集群搭建、常用命令、客户端工具

    看这里,http://www.cnblogs.com/lihaoyang/p/8358153.html 1,先使用可视化客户端软件 ZooInspector 连接上集群中的一个节点,看下zk的结构: ...

  10. 第六章-Javac符号表

    需要参考: (1)Architecture of a Java Compiler (2)关于符号Symbol第一篇 (3)关于符号Symbol第二篇 (4)关于类型Type (5)关于作用域范围Sco ...