一、概述

  1.sqoop是什么

    从其官网:http://sqoop.apache.org/

  Apache Sqoop(TM) is a tool designed for efficiently transferring bulk data between Apache Hadoop and structured datastores such as relational databases

    中文来说,就是:

sqoop是apache旗下一款“Hadoop和关系数据库服务器之间传送数据”的工具。

  导入数据:MySQL,Oracle导入数据到Hadoop的HDFS、HIVE、HBASE等数据存储系统;

  导出数据:从Hadoop的文件系统中导出数据到关系数据库

    简而言之,sqoop是一个数据迁移工具!

  2.主要原理  

    将导入或导出命令翻译成mapreduce程序来实现

    在翻译出的mapreduce中主要是对inputformat和outputformat进行定制

二、安装与配置

    1.准备

      本地具备java与hadoop环境,下载sqoop,下载地址:http://archive.apache.org/dist/sqoop/1.4.6/

      // 这里的Alpha表示的是内测版

      将下载的sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz上传到服务器

    2.解压

[hadoop@mini1 ~]$ tar -zxvf sqoop-1.4..bin__hadoop-2.0.-alpha.tar.gz 

    // 位置可以按照自己的习惯进行定义

[hadoop@mini1 ~]$ mv sqoop-1.4..bin__hadoop-2.0.-alpha sqoop

    3.修改配置文件

[hadoop@mini1 ~]$ cd sqoop/
[hadoop@mini1 sqoop]$ cd conf/
[hadoop@mini1 conf]$ mv sqoop-env-template.sh sqoop-env.sh

    通过which/whereis 定位一下hadoop等目录

    打开 sqoop-env.sh,修改以下几项(打开注释,添加相关值):

export HADOOP_COMMON_HOME=/home/hadoop/apps/hadoop-2.6.4/
export HADOOP_MAPRED_HOME=/home/hadoop/apps/hadoop-2.6.4/
export HIVE_HOME=/home/hadoop/apps/hive-1.2.

    4.加入Mysql的jdbc驱动包

      由于我们是向MySQL导数据,所以需要的是对应的驱动包到Lib目录(这里就直接从hive里面拿了)

[hadoop@mini1 sqoop]$ cp ~/apps/hive-1.2./lib/mysql-connector-java-5.1..jar ./lib/

    5.验证启动     

[hadoop@mini1 sqoop]$ bin/sqoop

    // 如果配置了环境变量,将可以直接通过sqoop启动

    6.查看帮助

[hadoop@mini1 sqoop]$ bin/sqoop help
usage: sqoop COMMAND [ARGS]

Available commands:
codegen Generate code to interact with database records
create-hive-table Import a table definition into Hive
eval Evaluate a SQL statement and display the results
export Export an HDFS directory to a database table
help List available commands
import Import a table from a database to HDFS
import-all-tables Import tables from a database to HDFS
import-mainframe Import datasets from a mainframe server to HDFS
job Work with saved jobs
list-databases List available databases on a server
list-tables List available tables in a database
merge Merge results of incremental imports
metastore Run a standalone Sqoop metastore
version Display version information See 'sqoop help COMMAND' for information on a specific command.

三、sqoop数据导入

  “导入工具”导入单个表从RDBMS到HDFS。表中的每一行被视为HDFS的记录。所有记录都存储为文本文件的文本数据(或者Avro、sequence文件等二进制数据)

  1.数据库导入HDFS

    1.语法

$ sqoop import (generic-args) (import-args) 

  // 完整参数,参考:http://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html#_literal_sqoop_import_literal

    2.示例

bin/sqoop import \
--connect jdbc:mysql://mini1:3306/test \
--username root \
--password Zcc170821# \
--table girl \
--m

   -m,--num-mappers <n> Use n map tasks to import in parallel,其他完整参数,参考文档

   未指定--target-dir /user/sqoop/test1 则默认为/user/hadoop/表名,这里可以进行在HDFS上的查看:

[hadoop@mini1 lib]$ hadoop fs -cat /user/hadoop/girl/part-m-

  2.导入关系表到Hive

    其实基本上是从数据库到hdfs,再Load到hive的表,不过这里可以一步到位了

bin/sqoop import \
--connect jdbc:mysql://mini1:3306/test \
--username root \
--password Zcc170821# \
--table girl \
--target-dir /user/hadoop/girl2 \
--hive-import \
--m

 

   3.导入数据子集

    有时候只想导入数据表中的一部分数据,可以通过where来进行过滤筛选:

bin/sqoop import \
--connect jdbc:mysql://mini1:3306/test \
--username root \
--password Zcc170821# \
--where "id > 5" \
--target-dir /user/hadoop/girl3 \
--table girl \
--m

    当然,如果单纯where无法满足,可以使用自定义的query语句来筛选:——注意只要写了where则后面的 and \$CONDITIONS是死的,必须这么写!

bin/sqoop import \
--connect jdbc:mysql://mini1:3306/test \
--username root \
--password Zcc170821# \
--query "select * from girl where name='11' and id>6 and \$CONDITIONS" \
--target-dir /user/hadoop/girl3 \
--table girl \
--m

    也可以使用split by来指定切片字段,这样就结合--m参数分配了

--split-by id \
--m

    或者指定字段的分隔符,这样到HDFS就是这个分割符了。这样以后建表从hive映射就使用这个分隔符了:

--fields-terminated-by <char>

  4.增量导入 

    增量导入( Incremental Imports)是仅导入新添加的表中的行的技术。

    它需要添加‘incremental’, ‘check-column’, 和 ‘last-value’选项来执行增量导入

bin/sqoop import \
--connect jdbc:mysql://mini1:3306/test \
--username root \
--password Zcc170821# \
--table girl --m \
--target-dir /user/hadoop/girl4 \
--incremental append \
--check-column id \
--last-value

   // 如果不想一直因为已经存在target-dir而新建,可以使用参数delete-target-dir,这样就会自动删除已经存在的目录了!请选择性使用

  这样,targer-dir里面就是新增的数据了:

[hadoop@mini1 lib]$ hadoop fs -cat /user/hadoop/girl4/part-m-
,,aa
,,bb

四、sqoop数据导出 

   1.从HDFS中导出

   将数据从HDFS导出到RDBMS数据库

  导出前,目标表必须存在于目标数据库中

    默认操作是从将文件中的数据使用INSERT语句插入到表中

    更新模式下,是生成UPDATE语句更新表数据

  1.手动创建目标表

两种方法复制表结构:
1.create table B as select * from A where 1=2;
或者:
2.create table B like A;

  这里就复制上面的girl的表结构了

  2.执行导出命令

bin/sqoop export \
--connect jdbc:mysql://mini1:3306/test \
--username root \
--password Zcc170821# \
--table girl2 \
--export-dir /user/hadoop/girl/

  如果文件不是默认的,分隔符,则添加指定参数:

--fields-terminated-by '\t'

  2.sqoop作业

    sqoop也支持作业的形式

      --create创建

bin/sqoop job --create myimportjob -- import --connect jdbc:mysql://hdp-node-01:3306/test --username root --password root --table emp --m 1

      --list查看

$ sqoop job --list

      --show查看

$ sqoop job --show myjob

      --exec执行

$ sqoop job --exec myjob
它会显示下面的输出。
// :: INFO tool.CodeGenTool: Beginning code generation
...

    但是我们可以用shell脚本的方式来运行调度,所以这个意义并不是很大.

大数据入门第十二天——sqoop入门的更多相关文章

  1. 大数据入门第十二天——azkaban入门

    一.概述 1.azkaban是什么 通过官方文档:https://azkaban.github.io/ Azkaban is a batch workflow job scheduler create ...

  2. 大数据入门第十二天——flume入门

    一.概述 1.什么是flume 官网的介绍:http://flume.apache.org/ Flume is a distributed, reliable, and available servi ...

  3. 大数据入门第二十天——scala入门(一)入门与配置

    一.概述 1.什么是scala  Scala是一种多范式的编程语言,其设计的初衷是要集成面向对象编程和函数式编程的各种特性.Scala运行于Java平台(Java虚拟机),并兼容现有的Java程序. ...

  4. 大数据入门第二十一天——scala入门(二)并发编程Akka

    一.概述 1.什么是akka Akka基于Actor模型,提供了一个用于构建可扩展的(Scalable).弹性的(Resilient).快速响应的(Responsive)应用程序的平台. 更多入门的基 ...

  5. 大数据入门第二十一天——scala入门(一)并发编程Actor

    注:我们现在学的Scala Actor是scala 2.10.x版本及以前版本的Actor. Scala在2.11.x版本中将Akka加入其中,作为其默认的Actor,老版本的Actor已经废弃 一. ...

  6. 大数据入门第二十天——scala入门(二)scala基础01

    一.基础语法 1.变量类型 // 上表中列出的数据类型都是对象,也就是说scala没有java中的原生类型.在scala是可以对数字等基础类型调用方法的. 2.变量声明——能用val的尽量使用val! ...

  7. 大数据入门第二十天——scala入门(二)scala基础02

    一. 类.对象.继承.特质 1.类 Scala的类与Java.C++的类比起来更简洁 定义: package com.jiangbei //在Scala中,类并不用声明为public. //Scala ...

  8. 大数据入门第十九天——推荐系统与mahout(一)入门与概述

    一.推荐系统概述 为了解决信息过载和用户无明确需求的问题,找到用户感兴趣的物品,才有了个性化推荐系统.其实,解决信息过载的问题,代表性的解决方案是分类目录和搜索引擎,如hao123,电商首页的分类目录 ...

  9. 大数据入门第十七天——storm上游数据源 之kafka详解(一)入门与集群安装

    一.概述 1.kafka是什么 根据标题可以有个概念:kafka是storm的上游数据源之一,也是一对经典的组合,就像郭德纲和于谦 根据官网:http://kafka.apache.org/intro ...

随机推荐

  1. Origin绘制双Y轴图的方法

    1.已有数据绘图如下,其中网络流量的单位是M Bytes/s,与另外两组数据的单位(时间)不同,现在要为其添加右侧Y轴. 2.首先选中该图像,找到工具条,点击第三个按钮“Add Right-Y Lay ...

  2. SurfaceViewVideoList网络获取视频播放

    主布局: <?xml version="1.0" encoding="utf-8"?> <RelativeLayout xmlns:andro ...

  3. openCV 扩图

    1.扩图 import cv2 import numpy as np img=cv2.imread('Test2.jpg',1) width=img.shape[0] height=img.shape ...

  4. 标准标签、<jsp:include>、<jsp:forward>

    使用方法 标准标签在jsp页面直接编写即可,因为标准标签是JSP规范提供的,所有容器都支持. 被替代性 标准标签的许多功能都可以被JSTL与EL表达式语言所替代. 作用 标准标签可协助编写JSP时减少 ...

  5. qtcreator minggw 支持c++11

    pro文件添加 QMAKE_CXXFLAGS += -std=c++11

  6. jQuery EasyUI datagrid列名包含特殊字符会导致表格错位

    首先申明:本文所述的Bug存在于1.3.3以及更高版本中,其它低版本,本人未测试,太老的版本不想去折腾了. 洒家在写前端的SQL执行工具时,表格用了 jQuery EasyUI datagrid,因为 ...

  7. 控制台中寄宿WCF服务

    一.首先创建一个类库,用来定义WCF服务 修改服务代码定义,具体代码如下 // 注意: 使用"重构"菜单上的"重命名"命令,可以同时更改代码和配置文件中的接口名 ...

  8. 蓝魔i7s刷机

    ,电脑管家,豌豆荚之类的PC工具 5. 安装MFT6.0.43.exe, 注意:MFT6.0.43需要对应的ISOC和USB驱动,不可使用其它版本 6. 将CUSTOM_CONFIG..INI文件复制 ...

  9. Mongodb集群与分片 2

    前面我们介绍了简单的集群配置实例.在简单实例中,虽然MongoDB auto-Sharding解决了海量存储问题,和动态扩容问题,但是离我们在真实环境下面所需要的高可靠性和高可用性还有一定的距离. 下 ...

  10. SQL Server中数据库文件的存放方式,文件和文件组 (转载)

    简介 在SQL SERVER中,数据库在硬盘上的存储方式和普通文件在Windows中的存储方式没有什么不同,仅仅是几个文件而已.SQL SERVER通过管理逻辑上的文件组的方式来管理文件.理解文件和文 ...