hdu CA Loves GCD(dp)
一道我想骂人的题,差点把我气炸了。
题意:
求一个数的集合中(非多重集,每个数只出现一次)所有子集的gcd的和。结果MOD10^8+7输出。
输入输出不说了,自己看吧,不想写了。
当时我真把它当作数论题来写了,以为可以推导出什么公式然后化简大量重复的操作的。结果最后也没找到。最后题解说是dp,我同学说是暴力,吐血10升。
然后弄出来dp方程之后还是反复的wa,方程明明没啥问题,愣是卡了2个小时找不出错误,心情烦躁的要命,坑爹的室友还各种看视频打游戏,还不带耳机,我自己只好带着耳机大声放音乐,最后连音乐都听不下去了,恶心的想吐。
后来实在无奈了查了下题解,但是没人用dp写,有个用莫比乌斯反演的orz,还有个用暴力的,不过其实有dp的思想在里面。当然这不重要,重要的是我看见了他MOD加的位置挺有意思的,然后猛然想到我的int爆了!因为需要一个小于10^8的数×一个小于1000的数,这个数有可能爆!我叉!特么这不是故意卡int的意思吗?最后把这个改了终于过了……此时距离比赛结束已经5个小时了,我*!
状态转移方程:
dp[i][a[i]] += 1;
dp[i][j] += dp[i-1][j];
dp[i][gcd[j][a[i]]] += dp[i-1][j];
其中gcd[][]是预处理离线出来的,要不然可能会超时。
状态dp[i][j]表示在前n个数的集合中,gcd为j的集合有多少个。
方程表示三种情况:
- 只有a[i]的集合。
- 不存在a[i],只存在前i-1个数中若干数的集合。
- 存在a[i],且存在前i-1个数中若干数的集合。
时间复杂度为O(n*maxn),其中maxn为a[]数组中的最大值。
具体见代码——
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
#define LL long long const int N = ;
const int Mod = ; int a[N];
LL dp[N][N];
int gcd[N][N];
int t, n; int Gcd(int x, int y)
{
if(x < y)
{
int t = x;
x = y;
y = t;
}
while(y != )
{
int t = y;
y = x%y;
x = t;
}
return x;
} void Table()
{
for(int i = ; i < ; i++)
{
for(int j = ; j <= i; j++)
{
gcd[i][j] = gcd[j][i] = Gcd(i, j);
}
}
} int main()
{
//freopen("test.in", "r", stdin);
Table();
scanf("%d", &t);
for(int tm = ; tm <= t; tm++)
{
scanf("%d", &n);
int maxn = ;
for(int i = ; i < n; i++)
{
scanf("%d", &a[i]);
maxn = maxn > a[i] ? maxn : a[i];
}
memset(dp, , sizeof(dp));
dp[][a[]] = ;
for(int i = ; i < n; i++)
{
dp[i][a[i]] += ; //转移方程1
for(int j = ; j <= maxn; j++)
{
dp[i][j] += dp[i-][j]; //转移方程2
dp[i][gcd[j][a[i]]] += dp[i-][j]; //转移方程3
dp[i][j] %= Mod;
dp[i][gcd[j][a[i]]] %= Mod;
}
}
int ans = ;
for(int i = ; i <= maxn; i++)
{
ans += (dp[n-][i]*i)%Mod; //这里小心dp如果是int可能会爆
ans %= Mod;
} printf("%d\n", ans);
}
return ;
}
自己确实挺弱的,还需要努力,但是今天确实非常烦!所有认为这些没什么好烦的,都是因为他没有身临其境的感觉。
hdu CA Loves GCD(dp)的更多相关文章
- HDU 5656 CA Loves GCD dp
CA Loves GCD 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5656 Description CA is a fine comrade w ...
- hdu-5656 CA Loves GCD(dp+数论)
题目链接: CA Loves GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Ot ...
- HDU 5656 CA Loves GCD (数论DP)
CA Loves GCD 题目链接: http://acm.hust.edu.cn/vjudge/contest/123316#problem/B Description CA is a fine c ...
- HDU 5656 ——CA Loves GCD——————【dp】
CA Loves GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)To ...
- hdu 5656 CA Loves GCD(n个任选k个的最大公约数和)
CA Loves GCD Accepts: 64 Submissions: 535 Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 2 ...
- HDU 5656 CA Loves GCD 01背包+gcd
题目链接: hdu:http://acm.hdu.edu.cn/showproblem.php?pid=5656 bc:http://bestcoder.hdu.edu.cn/contests/con ...
- CA Loves GCD (BC#78 1002) (hdu 5656)
CA Loves GCD Accepts: 135 Submissions: 586 Time Limit: 6000/3000 MS (Java/Others) Memory Limit: ...
- 数学(GCD,计数原理)HDU 5656 CA Loves GCD
CA Loves GCD Accepts: 135 Submissions: 586 Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 2621 ...
- hdu 5656 CA Loves GCD
CA Loves GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)To ...
随机推荐
- Object类型的怎么判断空值
例如 Object result; 我直接这样是不行的 if(result==null) //这样是错的 ... 要这样判断 if(result == System.DBNull.Value) //这 ...
- Java访问权限控制
访问权限控制 java提供了访问权限修饰词,以供类库开发人员向客户端程序员指明哪些是可用的,哪些是不可用的.访问权限控制的等级,从最大权限到最小权限依次是:public.prote ...
- html template--(来自网易)
html template 概述 包含完整头部信息和主体结构的HTML基础模板. 代码展示 <!DOCTYPE html> <html> <head> < ...
- html5 canvas 弧形描边渐变
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- lemon spj无效编译器解决方法
反正我是被坑了很久,心里增的敲难过呀! 我曾经无数次的想把它解决掉: 啊啊啊啊啊啊! 什么嘛!什么嘛! 这个空白的框框里到底要填什么嘛!!! 你已经是一个成熟的lemon了,就不能自动识别给个选项吗! ...
- 工作目录与os.getcwd()
假设某程序在/root/a/aa.py,在shell,当前pwd为/root,输入./a/aa.py运行py程序,则爱程序的工作目录是/root.而不是程序所在文件夹,os.getcwd()就是查看工 ...
- ispoweroftwo 判断2的次幂【转】
转自:https://www.cnblogs.com/troublelost/p/5236391.html 首先结果是: public bool IsPowerOfTwo(int n) { if(n& ...
- Linux USB Host-Controller的初始化代码框架分析【转】
转自:http://blog.csdn.net/zkami/article/details/2496770 usb_hcd_omap_probe (const struct hc_driver *dr ...
- mydumper安装及使用
mydumper 官网:https://launchpad.net/mydumper 安装方式: 1.yum install glib2-devel mysql-devel zlib-devel pc ...
- 安装Python3.6.4后,在使用numpy时报错RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88
原因: 因为安装numpy用的是 pip来安装的 pypi官方对于numpy的库已经升级了,但是升级后的版本与其他的库不匹配 所以报错 解决: 先把已经安装的numpy卸载: pip uninstal ...