Intervals

题目连接:

http://codeforces.com/gym/100231/attachments

Description

Start with an integer, N0, which is greater than 0. Let N1 be the number of ones in the binary representation of N0. So, if N0 = 27, N1 = 4. For all i > 0, let Ni be the number of ones in the binary

representation of Ni−1. This sequence will always converge to one. For any starting number, N0, let K be the minimum value of i ≥ 0 for which Ni = 1. For example, if N0 = 31, then N1 = 5, N2 = 2, N3 = 1, so K = 3. Given a range of consecutive numbers, and a value X, how many numbers in the range have a K value equal to X?

Input

There will be several test cases in the input. Each test case will consist of three integers on a single line:

l, r, X, where l and r (1 ≤ l ≤ r ≤ 1018) are the lower and upper limits of a range of integers, and X

(0 ≤ X ≤ 10) is the target value for K. The input will end with a line with three 0s.

Output

For each test case, output a single integer, representing the number of integers in the range from l to

r (inclusive) which have a K value equal to X in the input. Print each integer on its own line with no

spaces. Do not print any blank lines between answers.

Sample Input

31 31 3

31 31 1

27 31 1

27 31 2

1023 1025 1

1023 1025 2

0 0 0

Sample Output

1

0

0

3

1

1

Hint

题意

首先给你Ni的定义,表示第几轮的时候,这个数是多少,Ni = Ni-1二进制表示下的1的个数

k 表示第几步的时候,Ni = 1

给你l,r,x

问你在l,r区间内,k等于x的数有多少个

题解:

我们首先预处理vis[i]表示有i个1的时候的步数,这个用dp很容易解决

然后我们就可以数位dp去做了,做[1,x]里面二进制数为k个的数量

注意特判1的情况,比较麻烦

代码

#include<bits/stdc++.h>
using namespace std; long long l,r,t;
int vis[100];
long long ans = 0;
int getone(long long x)
{
int c=0;
while(x>0)
{
if((x&1)==1)
c++;
x>>=1;
}
return c;
}
long long f[70][70];
void init()
{
memset(f,0,sizeof(f));
f[0][0] = 1LL;
for(int i=1;i<=62;i++)
{
f[i][0] = 1LL;
for(int j=1;j<=i;j++)
{
f[i][j] = f[i-1][j-1] + f[i-1][j];
}
}
}
long long calc(long long x,int k)
{
int tot = 0;
long long ans = 0;
for(long long i=62;i>0;i--)
{
if(x&(1LL<<i))
{
tot++;
if(tot>k) break;
x ^= (1LL<<i);
}
if((1LL<<(i-1LL))<=x)
{
if(k>=tot)
ans += f[i-1][k-tot];
}
}
if(tot + x == k) ans++;
return ans;
}
long long solve(long long limit,int x)
{
ans=0;
for(int i=1;i<=61;i++)
if(vis[i]==x)
{
if(i==1)
ans--;
ans+=calc(limit,i);
}
return ans;
}
int main()
{
init();
vis[1]=1;
for(int i=2;i<=61;i++)
vis[i]=vis[getone(i)]+1;
while(scanf("%lld%lld%d",&l,&r,&t)!=EOF)
{
if(l==0&&r==0&&t==0)return 0;
if(t==0)
{
if(l==1)
printf("1\n");
else
printf("0\n");
continue;
}
if(t==1)
{
if(l==1)
printf("%lld\n",solve(r,t)-solve(l-1,t)-1);
else
printf("%lld\n",solve(r,t)-solve(l-1,t));
}
else
printf("%lld\n",solve(r,t)-solve(l-1,t));
}
}

Codeforces Gym 100231L Intervals 数位DP的更多相关文章

  1. codeforces 55D - Beautiful numbers(数位DP+离散化)

    D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...

  2. Codeforces #55D-Beautiful numbers (数位dp)

    D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...

  3. Codeforces - 55D Beautiful numbers (数位dp+数论)

    题意:求[L,R](1<=L<=R<=9e18)区间中所有能被自己数位上的非零数整除的数的个数 分析:丛数据量可以分析出是用数位dp求解,区间个数可以转化为sum(R)-sum(L- ...

  4. CodeForces - 55D - Beautiful numbers(数位DP,离散化)

    链接: https://vjudge.net/problem/CodeForces-55D 题意: Volodya is an odd boy and his taste is strange as ...

  5. Codeforces Gym 100231B Intervals 线段树+二分+贪心

    Intervals 题目连接: http://codeforces.com/gym/100231/attachments Description 给你n个区间,告诉你每个区间内都有ci个数 然后你需要 ...

  6. CodeForces 628D Magic Numbers (数位dp)

    题意:找到[a, b]符合下列要求的数的个数. 1.该数字能被m整除 2.该数字奇数位全不为d,偶数位全为d 分析: 1.dp[当前的位数][截止到当前位所形成的数对m取余的结果][当前数位上的数字是 ...

  7. FZU2179/Codeforces 55D beautiful number 数位DP

    题目大意: 求  1(m)到n直接有多少个数字x满足 x可以整出这个数字的每一位上的数字 思路: 整除每一位.只需要整除每一位的lcm即可 但是数字太大,dp状态怎么表示呢 发现 1~9的LCM 是2 ...

  8. CodeForces - 55D Beautiful numbers —— 数位DP

    题目链接:https://vjudge.net/problem/CodeForces-55D D. Beautiful numbers time limit per test 4 seconds me ...

  9. Codeforces 981 D.Bookshelves(数位DP)

    Codeforces 981 D.Bookshelves 题目大意: 给n个数,将这n个数分为k段,(n,k<=50)分别对每一段求和,再将每个求和的结果做与运算(&).求最终结果的最大 ...

随机推荐

  1. Twitter Storm如何保证消息不丢失

    storm保证从spout发出的每个tuple都会被完全处理.这篇文章介绍storm是怎么做到这个保证的,以及我们使用者怎么做才能充分利用storm的可靠性特点. 一个tuple被”完全处理”是什么意 ...

  2. Drupal如何更新注册表?

    Drupal的注册表是指registry和registry_file两个数据表.前一个表保存所有可用的类和接口以及它们所对应的文件,后一个表保存每个文件的hash码. 1. 将所有需要更新的文件都汇总 ...

  3. Http中Cookie和Session介绍

    先介绍下B/S系统的工作的完整过程.首先客户端的浏览器发出请求,服务端的webserver接受到请求后,调用相关请求的页面进行处理,处理完后将结果发送给客户端的浏览器进行显示.只能是浏览器向webse ...

  4. 一个Web页面的生命周期 ,面试常常被问到

    常规页生命周期阶段 一般来说,页要经历下表概述的各个阶段.除了页生命周期阶段以外,在请求前后还存在应用程序阶段,但是这些阶段并不特定于页.有关更多信息,请参见 ASP.NET 应用程序生命周期概述. ...

  5. BITED-Windows8应用开发学习札记之二:Win8应用常用视图设计

    感觉自我表述能力有欠缺,技术也不够硬,所以之后的Windows8应用开发学习札记的文章就偏向于一些我认为较难的地方和重点了多有抱歉. 上节课是入门,这节课就已经开始进行视图设计了. Windows应用 ...

  6. Linux下IP的配置

    修改ip地址1.即时生效:# ifconfig eth0 192.168.1.102 netmask 255.255.255.02.启动生效:修改/etc/sysconfig/network-scri ...

  7. 隐藏apache版本号 PHP版本号

    httpd-default.conf ServerTokens Prod ServerSignature Off php.ini expose_php Off 重启服务器

  8. Java实现中文字符串的排序功能

    package test; /** * * @Title 书的信息类 * @author LR * @version 1.0 * @since 2016-04-21 */ public class B ...

  9. 关于Bean

    什么是Bean? 一个Bean 就是一个类.我们不必为制造任何的Bean而编写一些特殊的代码或者使用特殊的编程语言.事实上,我们唯一需要做的是略微地修改我们对我们方法命名的办法.方法名通知应用程序构建 ...

  10. mysql 全文查找fulltext

    从 Mysql 4.0 开始就支持全文索引功能,但是 Mysql 默认的最小索引长度是 4.如果是英文默认值是比较合理的,但是中文绝大部分词都是2个字符,这就导致小于4个字的词都不能被索引,全文索引功 ...