题目描述:

Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.

Example:
For num = 5 you should return [0,1,1,2,1,2].

Follow up:

  • It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
  • Space complexity should be O(n).
  • Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.

Hint:

    1. You should make use of what you have produced already.
    2. Divide the numbers in ranges like [2-3], [4-7], [8-15] and so on. And try to generate new range from previous.
    3. Or does the odd/even status of the number help you in calculating the number of 1s?

解题思路:

0     0000

1     0001

2     0010

3     0011

4     0100

5     0101

6     0110

7     0111

8     1000

9     1001

10   1010

11   1011

12   1100

13   1101

14   1110

15   1111

........

观察上面的情况,我们发现0,1,2-3,4-7,8-15为一组,且每组开头的1的位数都是1。每组其余的数都可以用本组开头的数加上另一个差值。且这两个数都已经在前面算过了。

代码如下:

public class Solution{
public int[] countBits(int num){
int[] res = new int[num + 1];
int pow = 1, k = 1;
res[0] = 0;
while(k <= num){
if(k == pow){
pow *= 2;
res[k++] = 1;
} else {
res[k] = res[pow / 2 ] + res[k - pow / 2];
k++;
}
}
return res;
}
}

Java [Leetcode 338]Counting Bits的更多相关文章

  1. LN : leetcode 338 Counting Bits

    lc 338 Counting Bits 338 Counting Bits Given a non negative integer number num. For every numbers i ...

  2. leetcode 338. Counting Bits,剑指offer二进制中1的个数

    leetcode是求当前所有数的二进制中1的个数,剑指offer上是求某一个数二进制中1的个数 https://www.cnblogs.com/grandyang/p/5294255.html 第三种 ...

  3. Leetcode 338. Counting Bits

    Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the ...

  4. Week 8 - 338.Counting Bits & 413. Arithmetic Slices

    338.Counting Bits - Medium Given a non negative integer number num. For every numbers i in the range ...

  5. 【LeetCode】338. Counting Bits (2 solutions)

    Counting Bits Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num  ...

  6. 【LeetCode】338. Counting Bits 解题报告(Python & Java & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目描述 Given a non negati ...

  7. 【LeetCode】Counting Bits(338)

    1. Description Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num ...

  8. 【leetcode】338 .Counting Bits

    原题 Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate t ...

  9. 338. Counting Bits

    https://leetcode.com/problems/counting-bits/ 给定一个非负数n,输出[0,n]区间内所有数的二进制形式中含1的个数 Example: For num = 5 ...

随机推荐

  1. C++ 操作法重载

    http://www.weixueyuan.net/view/6382.html http://wuyuans.com/2012/09/cpp-operator-overload/

  2. windows server 2008 R2 远程连接用户数修改

    设置windows server 2008 R2 远程连接用户数修改,三步搞定 1.运行(win+R)中输入tsconfig.msc 2.双击“限制每个用户只能进行一个会话”,取消这个选项负选框 3. ...

  3. Guava文档翻译之ListenableFuture

    ListenableFutureExplained 并发是一个困难的问题,但是使用强大而简单的抽象可以极大地简化并发问题.为了简化事情,Guava使用ListenableFuture继承了JDK的Fu ...

  4. SOAP vs REST

    Both methods are used by many of the large players. It's a matter of preference. My preference is RE ...

  5. UNDERSTANDING CALLBACK FUNCTIONS IN JAVASCRIPT

    转自: http://recurial.com/programming/understanding-callback-functions-in-javascript/ Callback functio ...

  6. javascript加速运动

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...

  7. Android 调节当前Activity的屏幕亮度

    调节的关键代码: WindowManager.LayoutParams layoutParams = getWindow().getAttributes(); layoutParams.screenB ...

  8. HtmlAgilityPack 总结(一)

    一个解析html的C#类库HtmlAgilityPack, HtmlAgilityPack是一个基于.Net的.第三方免费开源的微型类库,主要用于在服务器端解析html文档(在B/S结构的程序中客户端 ...

  9. hdu1874 畅通工程续

    http://acm.hdu.edu.cn/showproblem.php?pid=1874 //标准最短路模板 //需要注意的是两点间可能有多组 //需要取最短的 #include<iostr ...

  10. lintcode:Fibonacci 斐波纳契数列

    题目: 斐波纳契数列 查找斐波纳契数列中第 N 个数. 所谓的斐波纳契数列是指: 前2个数是 0 和 1 . 第 i 个数是第 i-1 个数和第i-2 个数的和. 斐波纳契数列的前10个数字是: 0, ...