If $\dim \scrH=3$, then $\dim \otimes^3\scrH =27$, $\dim \wedge^3\scrH =1$ and $\dim \vee^3\scrH =10$. In terms of an orthonormal basis of $\scrH$, write an element of $(\wedge^3\scrH )\oplus \vee^3\scrH)^\perp$.

Solution. Let $e_1,e_2,e_3$ be an orthonormal basis of $\scrH$, then $$\bex e_1\otimes e_1\otimes e_1-e_1\otimes e_1\otimes e_2\in (\wedge^3\scrH )\oplus \vee^3\scrH)^\perp. \eex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.4的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. 【EF】疑难杂症

    用户和购物车数据  主从表 添加 ADO.NET实体数据类型 [Test] public void EntiyConnect() { var context = new projectDatabase ...

  2. 中文变英文字母(ios)

    [_EnglishName setString:addressPerson.name]; if (CFStringTransform((__bridge CFMutableStringRef)_Eng ...

  3. c# Oracle 远程连接方式 plsql 连接oracle 11g 64位

    1.本地连接字符串:   string connect = "Data Source=orcl;user=XXX;password=XXX;Persist Security Info=Tru ...

  4. ios App 打包

    ios 版本的 App 打包两种方式: 1. 命令行 xcodebuild exportArchive -exportFormat ipa 2. 通过 xcode Product -> Arch ...

  5. MBProgressHUD ---

    1,MBProgressHUD常用属性和用法Demo - (void)testMBProgressHUD { NSLog(@"test MBProgressHUD "); /* 要 ...

  6. 你不需要jQuery(三):新AJAX方法fetch()

    XMLHttpRequest来完成ajax有些老而过时了. fetch()能让我们完成类似 XMLHttpRequest (XHR) 提供的ajax功能.它们之间的主要区别是,Fetch API 使用 ...

  7. C#跳出循环的几种方法的区别

    break是循环结束执行,执行循环体后面的代码. continue是跳过本次循环未执行的代码,继续执行下一次循环. goto是跳到指定的指令去,你指哪,他跳到哪. return是函数返回,如果循环在M ...

  8. Notepad++ 右键菜单自定义配置

    问:想在右键菜单里面多加几个功能,怎么加,比如区块注释 答:其实notepad++的配置文件存放路径不在自己的软件路径,而存在于 xp:C:\Documents and Settings\Admini ...

  9. [js综合问题汇总]js窗口关闭事件,表单名称,父窗口子窗口,var变量名

    <script type="text/javascript"> window.onbeforeunload = onbeforeunload_handler; //wi ...

  10. HeadFirst设计模式之适配器模式

    一. 1. 2.The Adapter Pattern converts the interface of a class into another interface the clients exp ...