Codeforces Round #306 (Div. 2)
You are given string s. Your task is to determine if the given string s contains two non-overlapping substrings "AB" and "BA" (the substrings can go in any order).
The only line of input contains a string s of length between 1 and 105 consisting of uppercase Latin letters.
Print "YES" (without the quotes), if string s contains two non-overlapping substrings "AB" and "BA", and "NO" otherwise.
ABA
NO
BACFAB
YES
AXBYBXA
NO
In the first sample test, despite the fact that there are substrings "AB" and "BA", their occurrences overlap, so the answer is "NO".
In the second sample test there are the following occurrences of the substrings: BACFAB.
In the third sample test there is no substring "AB" nor substring "BA".
注意细节、比如:ABACAB
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
#define N 100010 int main()
{
char s[N];
char s1[]="AB",s2[]="BA";
while(scanf("%s",s)!=EOF)
{
bool flag=;
int len=strlen(s);
if(len<=) flag=;
else{
char *p=strstr(s,s1);
char *q=strstr(s,s2);
if(p==NULL || q==NULL) flag=;
else{
if(strstr(p+,s2) || strstr(q+,s1)) ;
else flag=;
}
}
if(!flag) cout<<"NO\n";
else cout<<"YES\n";
}
return ;
}
You have n problems. You have estimated the difficulty of the i-th one as integer ci. Now you want to prepare a problemset for a contest, using some of the problems you've made.
A problemset for the contest must consist of at least two problems. You think that the total difficulty of the problems of the contest must be at least l and at most r. Also, you think that the difference between difficulties of the easiest and the hardest of the chosen problems must be at least x.
Find the number of ways to choose a problemset for the contest.
The first line contains four integers n, l, r, x (1 ≤ n ≤ 15, 1 ≤ l ≤ r ≤ 109, 1 ≤ x ≤ 106) — the number of problems you have, the minimum and maximum value of total difficulty of the problemset and the minimum difference in difficulty between the hardest problem in the pack and the easiest one, respectively.
The second line contains n integers c1, c2, ..., cn (1 ≤ ci ≤ 106) — the difficulty of each problem.
Print the number of ways to choose a suitable problemset for the contest.
3 5 6 1
1 2 3
2
4 40 50 10
10 20 30 25
2
5 25 35 10
10 10 20 10 20
6
In the first example two sets are suitable, one consisting of the second and third problem, another one consisting of all three problems.
In the second example, two sets of problems are suitable — the set of problems with difficulties 10 and 30 as well as the set of problems with difficulties 20 and 30.
In the third example any set consisting of one problem of difficulty 10 and one problem of difficulty 20 is suitable.
暴力即可
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
#define INF 1<<30
#define N 50 int ans;
int n,l,r,x;
int c[N]; void dfs(int id,int sum,int mx,int mi,int num){
if(id>n){
if(sum>=l&&sum<=r&&num>=&&mx-mi>=x)ans++;
return;
}
dfs(id+,sum+c[id],max(mx,c[id]),min(mi,c[id]),num+);
dfs(id+,sum,mx,mi,num);
}
int main()
{
ans=;
cin>>n>>l>>r>>x;
for(int i=;i<=n;++i)cin>>c[i];
dfs(,,,INF,);
cout<<ans<<endl;
return ;
}
You are given a non-negative integer n, its decimal representation consists of at most 100 digits and doesn't contain leading zeroes.
Your task is to determine if it is possible in this case to remove some of the digits (possibly not remove any digit at all) so that the result contains at least one digit, forms a non-negative integer, doesn't have leading zeroes and is divisible by 8. After the removing, it is forbidden to rearrange the digits.
If a solution exists, you should print it.
The single line of the input contains a non-negative integer n. The representation of number n doesn't contain any leading zeroes and its length doesn't exceed 100 digits.
Print "NO" (without quotes), if there is no such way to remove some digits from number n.
Otherwise, print "YES" in the first line and the resulting number after removing digits from number n in the second line. The printed number must be divisible by 8.
If there are multiple possible answers, you may print any of them.
3454
YES
344
10
YES
0
111111
NO
一个数是8的倍数,那么该数模1000得到的最后三位组成的数字一定是8的倍数
所以暴力枚举最后三位即可
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<string>
using namespace std;
#define INF 0x7fffffff
#define N 110 char s[N];
int num[N]; int main()
{
scanf("%s", s);
int len = strlen(s);
for (int i = ; i < len; i++) num[i] = s[i] - '';
//
for (int i = ; i < len; i++) {
if (num[i] % == ) {
printf("YES\n");
printf("%d\n", num[i]);
return ;
}
}
//
for (int i = ; i < len; i++) {
for (int j = i + ; j < len; j++) {
int sum = num[i] * + num[j];
if (sum % == ) {
printf("YES\n");
printf("%d\n", sum);
return ;
}
}
}
//3+
if (len >= ) {
for (int i = ; i < len; i++) {
for (int j = i + ; j < len; j++) {
for (int k = j + ; k < len; k++) {
int sum = num[i] * + num[j] * + num[k];
if (sum % == ) {
printf("YES\n");
printf("%d\n", sum);
return ;
}
}
}
}
}
printf("NO\n");
return ;
}
An undirected graph is called k-regular, if the degrees of all its vertices are equal k. An edge of a connected graph is called a bridge, if after removing it the graph is being split into two connected components.
Build a connected undirected k-regular graph containing at least one bridge, or else state that such graph doesn't exist.
The single line of the input contains integer k (1 ≤ k ≤ 100) — the required degree of the vertices of the regular graph.
Print "NO" (without quotes), if such graph doesn't exist.
Otherwise, print "YES" in the first line and the description of any suitable graph in the next lines.
The description of the made graph must start with numbers n and m — the number of vertices and edges respectively.
Each of the next m lines must contain two integers, a and b (1 ≤ a, b ≤ n, a ≠ b), that mean that there is an edge connecting the vertices a and b. A graph shouldn't contain multiple edges and edges that lead from a vertex to itself. A graph must be connected, the degrees of all vertices of the graph must be equal k. At least one edge of the graph must be a bridge. You can print the edges of the graph in any order. You can print the ends of each edge in any order.
The constructed graph must contain at most 106 vertices and 106 edges (it is guaranteed that if at least one graph that meets the requirements exists, then there also exists the graph with at most 106 vertices and at most 106 edges).
1
YES
2 1
1 2
In the sample from the statement there is a suitable graph consisting of two vertices, connected by a single edge.
求至少有一个桥的K-正则图。
如图,可以看出偶数无解、代码略(hen)搓
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<string>
using namespace std;
#define INF 0x7fffffff
#define N 110 int main()
{
int k;
while(scanf("%d",&k)!=EOF)
{
if(k%==) printf("NO\n");
else
{
printf("YES\n");
if(k==)
{
printf("2 1\n");
printf("1 2\n");
continue;
}
int s1=,s2=*k;
printf("%d %d\n",*k-,*(k-)+*(k-)*(k-)+(k-)+);
printf("%d %d\n",s1,s2);
for(int i=s1+;i<s1+k;i++) printf("%d %d\n",s1,i);
for(int i=s1+;i<s1+k;i++){
for(int j=s1+k;j<s1+*k-;j++){
printf("%d %d\n",i,j);
}
}
for(int i=s1+k;i<s1+*k-;i+=) printf("%d %d\n",i,i+);
for(int i=s2+;i<s2+k;i++) printf("%d %d\n",s2,i);
for(int i=s2+;i<s2+k;i++){
for(int j=s2+k;j<s2+*k-;j++){
printf("%d %d\n",i,j);
}
}
for(int i=s2+k;i<s2+*k-;i+=) printf("%d %d\n",i,i+);
}
}
return ;
}
Implication is a function of two logical arguments, its value is false if and only if the value of the first argument is true and the value of the second argument is false.
Implication is written by using character '', and the arguments and the result of the implication are written as '0' (false) and '1' (true). According to the definition of the implication:
When a logical expression contains multiple implications, then when there are no brackets, it will be calculated from left to fight. For example,
.
When there are brackets, we first calculate the expression in brackets. For example,
.
For the given logical expression determine if it is possible to place there brackets so that the value of a logical expression is false. If it is possible, your task is to find such an arrangement of brackets.
The first line contains integer n (1 ≤ n ≤ 100 000) — the number of arguments in a logical expression.
The second line contains n numbers a1, a2, ..., an (), which means the values of arguments in the expression in the order they occur.
Print "NO" (without the quotes), if it is impossible to place brackets in the expression so that its value was equal to 0.
Otherwise, print "YES" in the first line and the logical expression with the required arrangement of brackets in the second line.
The expression should only contain characters '0', '1', '-' (character with ASCII code 45), '>' (character with ASCII code 62), '(' and ')'. Characters '-' and '>' can occur in an expression only paired like that: ("->") and represent implication. The total number of logical arguments (i.e. digits '0' and '1') in the expression must be equal to n. The order in which the digits follow in the expression from left to right must coincide with a1, a2, ..., an.
The expression should be correct. More formally, a correct expression is determined as follows:
- Expressions "0", "1" (without the quotes) are correct.
- If v1, v2 are correct, then v1->v2 is a correct expression.
- If v is a correct expression, then (v) is a correct expression.
The total number of characters in the resulting expression mustn't exceed 106.
If there are multiple possible answers, you are allowed to print any of them.
4
0 1 1 0
YES
(((0)->1)->(1->0))
2
1 1
NO
1
0
YES
0
显然末尾必须为0
那么如果能这样:0/1 -> 1 ->0 = 0,就一定行
分为两种情况:
A. 如果a[n-1]本身就是1,那么显然可以
B. 如果a[n-1]为0,那么前面的1和0运算得到0,需要前面有1一个0来让0变成1
比如:1 0 1 1 1 0 0 :1->(0->(1->(1->(1->0))))->0
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
#define N 100010 int main()
{
int a[N],n;
while(scanf("%d",&n)!=EOF)
{
for(int i=;i<=n;i++) scanf("%d",&a[i]);
if(a[n]){
printf("NO\n");
continue;
}
//
if(n==)
{
printf("YES\n");
printf("0\n");
}
//
else if(n==)
{
if(a[]){
printf("YES\n");
printf("1->0\n");
}
else{
printf("NO\n");
}
}
//3+
else{
if(a[n-]){
printf("YES\n");
for(int i=;i<=n-;i++) printf("%d->",a[i]);
printf("%d",a[n]);
}
else{
int fg=-;
for(int i=n-;i>=;i--) if(!a[i]) {fg=i;break;}
if(fg==-) {printf("NO\n");continue;}
printf("YES\n");
for(int i=;i<fg;i++) printf("%d->",a[i]);
for(int i=fg;i<=n-;i++) printf("(%d->",a[i]);
printf("%d",a[n-]);
for(int i=fg;i<=n-;i++) printf(")");
printf("->%d\n",);
}
}
}
return ;
}
Codeforces Round #306 (Div. 2)的更多相关文章
- 数学/找规律/暴力 Codeforces Round #306 (Div. 2) C. Divisibility by Eight
题目传送门 /* 数学/暴力:只要一个数的最后三位能被8整除,那么它就是答案:用到sprintf把数字转移成字符读入 */ #include <cstdio> #include <a ...
- DFS Codeforces Round #306 (Div. 2) B. Preparing Olympiad
题目传送门 /* DFS: 排序后一个一个出发往后找,找到>r为止,比赛写了return : */ #include <cstdio> #include <iostream&g ...
- 水题 Codeforces Round #306 (Div. 2) A. Two Substrings
题目传送门 /* 水题:遍历一边先找AB,再BA,再遍历一边先找BA,再AB,两种情况满足一种就YES */ #include <cstdio> #include <iostream ...
- Codeforces Round #306 (Div. 2) E. Brackets in Implications 构造
E. Brackets in Implications Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/conte ...
- Codeforces Round #306 (Div. 2) D. Regular Bridge 构造
D. Regular Bridge Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/550/pro ...
- Codeforces Round #306 (Div. 2) C. Divisibility by Eight 暴力
C. Divisibility by Eight Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/ ...
- Codeforces Round #306 (Div. 2) B. Preparing Olympiad dfs
B. Preparing Olympiad Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/550 ...
- Codeforces Round #306 (Div. 2) A. Two Substrings 水题
A. Two Substrings Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/550/pro ...
- Codeforces Round #306 (Div. 2) 550A Two Substrings
链接:http://codeforces.com/contest/550/problem/A 这是我第一次玩cf这种比赛,前面做了几场练习,觉得div2的前面几个还是比较水的. 所以看到这道题我果断觉 ...
- Codeforces Round #306 (Div. 2) A B C
题目链接:http://codeforces.com/contest/550 A 暴力一发. 代码: #include <iostream> #include <stdio.h> ...
随机推荐
- Hibernate从入门到精通(七)多对一单向关联映射
上次的博文Hibernate从入门到精通(六)一对一双向关联映射中我们介绍了一下一对一双向关联映射,本次博文我们讲解一下多对一关联映射 多对一单向关联映射 多对一关联映射与一对一关联映射类似,只是在多 ...
- C# - Lambda 表达式
Lambda 表达式分为三个部分: 1 参数定义部分.参数是未类型化的,因此编译器可以根据上下文推断出他们的类型. 2 =>运算符,把Lambda表达式的参数与表达式体分开. 3 表达式体. d ...
- Jquery实现自动提示下拉框
1.引入脚本库: <script type="text/javascript" src="/Jscripts/jquery-1.3.2.js"&g ...
- Mac - 更新 Ruby
因为准备在项目中使用bootstrap,在安装bootstrap过程中提示需要Ruby的版本在1.9.2以上,而目前使用的Ruby版本是Mac系统自带的1.8.7.所以需要对Ruby进行升级.这里使用 ...
- where, group by, having
where vs having 当一个sql语句中存在where子句,会先执行where,然后执行group by,然后执行having. 一般来说,only use 'having' when yo ...
- zoj 3777
状态压缩dp #include<cstdio> #include<cstring> #include<algorithm> #define maxn 4100 us ...
- 酷摄影:关于梦 - Miki takahashi
这组摄影来自于日本东京摄影师 Miki takahashi 是一组双重曝光摄影,分开看也许很平常,但是结合在一起却非常有韵味. [gallery]
- 10 things you should know about NoSQL databases
For a quarter of a century, the relational database (RDBMS) has been the dominant model for database ...
- 【BZOJ 3343 】 分块
3343: 教主的魔法 Description 教主最近学会了一种神奇的魔法,能够使人长高.于是他准备演示给XMYZ信息组每个英雄看.于是N个英雄们又一次聚集在了一起,这次他们排成了一列,被编号为1. ...
- 我见过的 Objective-C, 讲的最通俗易懂的入门教程....
http://www.cnblogs.com/mjios/category/454764.html ---- 给力...