Project Euler 81:Path sum: two ways 路径和:两个方向
Path sum: two ways
In the 5 by 5 matrix below, the minimal path sum from the top left to the bottom right, by only moving to the right and down, is indicated in bold red and is equal to 2427.
131 | 673 | 234 | 103 | 18 |
201 | 96 | 342 | 965 | 150 |
630 | 803 | 746 | 422 | 111 |
537 | 699 | 497 | 121 | 956 |
805 | 732 | 524 | 37 | 331 |
Find the minimal path sum, in matrix.txt (right click and “Save Link/Target As…”), a 31K text file containing a 80 by 80 matrix, from the top left to the bottom right by only moving right and down.
在如下的5乘5矩阵中,从左上方到右下方始终只向右或向下移动的最小路径和为2427,由标注红色的路径给出。
131 | 673 | 234 | 103 | 18 |
201 | 96 | 342 | 965 | 150 |
630 | 803 | 746 | 422 | 111 |
537 | 699 | 497 | 121 | 956 |
805 | 732 | 524 | 37 | 331 |
在这个31K的文本文件matrix.txt(右击并选择“目标另存为……”)中包含了一个80乘80的矩阵,求出从该矩阵的左上方到右下方始终只向右和向下移动的最小路径和。
解题
这个题目很简单的
对第0列和第0行的数直接向下加
第0列:data[i][0] = data[i][0] + data[i-1][0] for i in 1:row - 1
第0行: data[0][i] = data[0][i] + data[0][i-1] for i in 1:col-1
其他情况
for i in 1:row -1
for j in 1:col-1
data[i][j] = data[i][j] + min(data[i-1][j],data[i][j-1])
最后元素data[row-1][col-1]就是最小路径的值。
Python
import time ;
import numpy as np def run():
filename = 'E:/java/projecteuler/src/Level3/p081_matrix.txt'
data = readData(filename)
Path_Sum(data) def Path_Sum(data):
row,col = np.shape(data)
for i in range(1,row):
data[0][i] = data[0][i]+data[0][i-1]
data[i][0] = data[i][0] + data[i-1][0]
for i in range(1,row):
for j in range(1,col):
data[i][j] += min(data[i-1][j],data[i][j-1])
print data[row-1][col-1] def readData(filename):
fl = open(filename)
data =[]
for row in fl:
row = row.split(',')
line = [int(i) for i in row]
data.append(line)
return data
if __name__=='__main__':
t0 = time.time()
run()
t1 = time.time()
print "running time=",(t1-t0),"s" #
# running time= 0.00799989700317 s
参考博客中的读取文件,这个读取文件的思想很好的,自己对于读取文件还不是很熟悉
上个Python程序是按照左上到右下走的
下面java的是按照右下向左上走的
package Level3; import java.awt.List;
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList; public class PE081{ static int[][] grid;
static void run() throws IOException{
String filename = "src/Level3/p081_matrix.txt";
String lineString = "";
ArrayList<String> listData = new ArrayList<String>();
BufferedReader data = new BufferedReader(new FileReader(filename));
while((lineString = data.readLine())!= null){
listData.add(lineString);
}
// 分配大小空间的 定义的grid 没有定义大小
assignArray(listData.size());
// 按照行添加到数组grid中
for(int index = 0,row_counter=0;index <=listData.size() - 1;++index,row_counter++){
populateArray(listData.get(index),row_counter);
}
System.out.println(Path_min(grid)); }
public static int Path_min(int[][] data){
int size = data.length;
for(int i=size -2;i>=0;--i){
data[i][size-1] += data[i+1][size-1];
data[size-1][i] += data[size-1][i+1];
}
for( int index = size -2;index >=0;index--){
for(int innerIndex = size -2;innerIndex >=0;innerIndex--){
data[index][innerIndex] += Math.min(data[index+1][innerIndex],
data[index][innerIndex+1]);
}
}
return data[0][0];
}
// 每行的数据添加到数组中
public static void populateArray(String str,int row){
int counter = 0;
String[] data = str.split(",");
for(int index = 0;index<=data.length -1;++index){
grid[row][counter++] = Integer.parseInt(data[index]);
}
}
public static void assignArray(int no_of_row){
grid = new int[no_of_row][no_of_row];
} public static void main(String[] args) throws IOException{
long t0 = System.currentTimeMillis();
run();
long t1 = System.currentTimeMillis();
long t = t1 - t0;
System.out.println("running time="+t/1000+"s"+t%1000+"ms");
// 427337
// running time=0s38ms
}
}
Project Euler 81:Path sum: two ways 路径和:两个方向的更多相关文章
- Project Euler 83:Path sum: four ways 路径和:4个方向
Path sum: four ways NOTE: This problem is a significantly more challenging version of Problem 81. In ...
- Project Euler 82:Path sum: three ways 路径和:3个方向
Path sum: three ways NOTE: This problem is a more challenging version of Problem 81. The minimal pat ...
- Leetcode 931. Minimum falling path sum 最小下降路径和(动态规划)
Leetcode 931. Minimum falling path sum 最小下降路径和(动态规划) 题目描述 已知一个正方形二维数组A,我们想找到一条最小下降路径的和 所谓下降路径是指,从一行到 ...
- 【LeetCode-面试算法经典-Java实现】【064-Minimum Path Sum(最小路径和)】
[064-Minimum Path Sum(最小路径和)] [LeetCode-面试算法经典-Java实现][全部题目文件夹索引] 原题 Given a m x n grid filled with ...
- [LeetCode] Path Sum II 二叉树路径之和之二
Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given su ...
- [LeetCode] Path Sum 二叉树的路径和
Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all ...
- [LeetCode] Binary Tree Maximum Path Sum(最大路径和)
Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...
- [LeetCode] 113. Path Sum II 二叉树路径之和之二
Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given su ...
- [LeetCode] 112. Path Sum 二叉树的路径和
Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all ...
随机推荐
- 如何通过jquery隐藏和显示元素
以下几种方式可以隐藏一个元素:1,CSS display的值是none.2,type="hidden"的表单元素.3,宽度和高度都显式设置为0.4,一个祖先元素是隐藏的,该元素是不 ...
- 安卓4.0下rem显示不正常的问题
在项目中使用了rem为单位,结果在Oppo和4.0下某些浏览器rem工作不正常,font-size计算出来的px总是大于预期的值,因此加了个Hack var docEl = doc.documentE ...
- php中的常用魔术方法总结
以下是对php中的常用魔术方法进行了详细的总结介绍,需要的朋友可以过来参考下 常用的魔术方法有:__Tostring () __Call() __autoLoad() __ clone() __GET ...
- fast_recovery_area无剩余空间(ORA-19815)
一.问题现象 --执行日志切换时,夯住 SQL ('/u01/oradata/oracle/redo04.log') size 50m; SQL> alter system switch log ...
- require.js入门指南(三)
*:first-child { margin-top: 0 !important; } body>*:last-child { margin-bottom: 0 !important; } /* ...
- Android Studio快速开发之道(各种语法糖)
现如今开发越来越追求效率和节奏,节省出时间做更多的事情,除了开发技术上的封装等,开发工具的使用技巧也是很重要的,今天就根据自己的经验来给大家介绍一下Android Studio快速开发之道. Post ...
- iTween基础之Look(使对象面朝指定位置)
一.基础介绍:二.基础属性 原文地址:http://blog.csdn.net/dingkun520wy/article/details/50578142 一.基础介绍 LookTo:旋转游戏对象使其 ...
- Pomodairo,番茄工作法-解刨篇
处于“信息大爆炸”的 e 时代的我们每天必定要处理很多的事情,不管是工作.学习.生活......面对这么多的纷杂的事物我们将如何应对?如何做到有条不紊的进行?高效.轻松.愉快的完成它呢?这时一款精致的 ...
- SkyDrive Pro client now available as standalone download. Hurray!
SkyDrive Pro client now available as standalone download. Hurray! by Todd O. Klindt on 5/21/2013 1 ...
- SQL Server数据库事务日志存储序列
原文 原文:http://blog.csdn.net/tjvictor/article/details/5251351 如果你的数据库运行在完整或是批量日志恢复模式下,那么你就需要使用作业(job ...