由于涉及到实数,一定,一定不能直接等于,一定,一定加一个误差<0.00001,坑死了……

有两种事物,不难想到用二分图。这里涉及到一个有趣的问题,这个二分图的完美匹配的最小权值和就是答案。为啥呢?因为如果有四个点,a,b,c,d 。Ab和cd交叉,ac和bd不交叉,那么ac和bd的长度和一定小于ab和cd的长度和,可以画一个图很容易就证出来。所以,如果所有的边都不交叉,又因为有解,那么最小的权值和就是解了。附图一枚,自己画的,比较简陋,凑活着看吧……

用KM算法求最佳完美匹配最小权值和,可以直接把所有的权值转成负值,在求最大权值和,但是这种方法我觉得有些不对劲,但是不知道在哪里= =,上网一查,才发现这种方法只能用于x和y数量相同的时候,正统做法应该是用一个很大的数减去每个权值,再求最大权值和。PS:我用的是取反的方法……

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#define N 110
struct sss
{
int x,y;
}white[N],black[N];
int n,vx[N],vy[N],fa[N];
double w[N][N],px[N],py[N],str[N];
double dis(int i,int j)
{
return sqrt((double)(black[i].x-white[j].x)*(black[i].x-white[j].x)+(double)(black[i].y-white[j].y)*(black[i].y-white[j].y));
}
int find(int now)
{
int i,j,k;
if (now==)
return ;
vx[now]=;
for (i=;i<=n;i++)
{
if (!vy[i]&&fabs(px[now]+py[i]-w[now][i])<0.00001)
{
vy[i]=;
if (fa[i]==||find(fa[i]))
{
fa[i]=now;
return ;
}
}
else
if (str[i]>px[now]+py[i]-w[now][i])
str[i]=px[now]+py[i]-w[now][i];
}
return ;
}
void KM()
{
int i,j,k,x,y,z;
double na;
memset(fa,,sizeof(fa));
for (i=;i<=n;i++)
{
memset(str,0x7f,sizeof(str));
while ()
{
memset(vx,,sizeof(vx));
memset(vy,,sizeof(vy));
if (find(i))
break;
na=0x7f;
for (j=;j<=n;j++)
if (!vy[j]&&na>str[j])
na=str[j];
for (j=;j<=n;j++)
{
if (vx[j])
px[j]-=na;
if (vy[j])
py[j]+=na;
else
str[j]-=na;
}
}
}
}
int main()
{
int i,j,k,x,y,z;
z=;
while(scanf("%d",&n)!=EOF)
{
if (z)
printf("\n");
else
z=;
for (i=;i<=n;i++)
px[i]=-;
memset(py,,sizeof(py));
for (i=;i<=n;i++)
scanf("%d%d",&white[i].x,&white[i].y);
for (i=;i<=n;i++)
scanf("%d%d",&black[i].x,&black[i].y);
for (i=;i<=n;i++)
for (j=;j<=n;j++)
{
w[i][j]=-dis(i,j);
if (px[i]<w[i][j])
px[i]=w[i][j];
}
KM();
for (i=;i<=n;i++)
printf("%d\n",fa[i]);
}
}

poj 3565 uva 1411 Ants KM算法求最小权的更多相关文章

  1. poj3565 Ants km算法求最小权完美匹配,浮点权值

    /** 题目:poj3565 Ants km算法求最小权完美匹配,浮点权值. 链接:http://poj.org/problem?id=3565 题意:给定n个白点的二维坐标,n个黑点的二维坐标. 求 ...

  2. 【POJ 2195】 Going Home(KM算法求最小权匹配)

    [POJ 2195] Going Home(KM算法求最小权匹配) Going Home Time Limit: 1000MS   Memory Limit: 65536K Total Submiss ...

  3. hdu1533 Going Home km算法解决最小权完美匹配

    Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  4. POJ-2195 Going Home---KM算法求最小权值匹配(存负边)

    题目链接: https://vjudge.net/problem/POJ-2195 题目大意: 给定一个N*M的地图,地图上有若干个man和house,且man与house的数量一致.man每移动一格 ...

  5. poj - 3686 The Windy's (KM算法)

    题意:n个订单和m个生产车间,每个订单在不同的车间生产所需要的时间不一样,并且每个订单只能在同一个车间中完成,直到这个车间完成这个订单就可以生产下一个订单.现在需要求完成n个订单的平均时间最少是多少. ...

  6. uva 1411 Ants (权值和最小的完美匹配---KM算法)

    uva 1411 Ants Description Young naturalist Bill studies ants in school. His ants feed on plant-louse ...

  7. UVA 1411 - Ants(二分图完美匹配)

    UVA 1411 - Ants 题目链接 题意:给定一些黑点白点,要求一个黑点连接一个白点,而且全部线段都不相交 思路:二分图完美匹配,权值存负的欧几里得距离,这种话,相交肯定比不相交权值小,所以做一 ...

  8. 训练指南 UVA - 11383(KM算法的应用 lx+ly >=w(x,y))

    layout: post title: 训练指南 UVA - 11383(KM算法的应用 lx+ly >=w(x,y)) author: "luowentaoaa" cata ...

  9. 【POJ 2400】 Supervisor, Supervisee(KM求最小权匹配)

    [POJ 2400] Supervisor, Supervisee(KM求最小权匹配) Supervisor, Supervisee Time Limit: 1000MS   Memory Limit ...

随机推荐

  1. 如何在线缩小jpg图片的大小

    直接使用在线PS保存成更小格式,即可! 在线PS网址:http://www.webps.cn/ 打开图片 点击保存 直接拖动滑动条就可以改变图片大小

  2. Swift入坑--block的定义

    typealias methodCompletionBlock = (String)->Void

  3. JFinal使用笔记1-部署demo项目到本地tomcat

    http://my.oschina.net/u/173975/blog/110261 尝试用JFinal开发个开源的社团管理系统,把开发过程中遇到的问题和解决办法记下来,以供参考. 部署jfinal_ ...

  4. 06---Java基础、面向对象

    一.Java基础 1.Java概述 Java语言特点:                     简单性.解释性.面向对象.高性能.分布式处理                     多线程.健壮性.动 ...

  5. Jordan Lecture Note-6: The Solutions of Nonlinear Equation.

    The Solutions of Nonlinear Equation 本文主要介绍几种用于解非线性方程$f(x)=0$的一些方法. (1) Bisection Method. 算法: step 1: ...

  6. c#_DropdownList Panel Textbox 控件交互使用,有autopostback和没有的区别

    <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="WebForm1.aspx. ...

  7. C# 之 OpenFileDialog的使用

    一.打开文件对话框(OpenFileDialog) 1. OpenFileDialog控件有以下基本属性 [1]InitialDirectory:对话框的初始目录 [2]Filter:要在对话框中显示 ...

  8. 高灵活低耦合Adapter快速开发攻略

    Android开发中经常需要使用Adapter. 传统方法是自定义一个Adapter并继承AndroidSDK内的BaseAdapter, 这种方式代码量大,耦合度高,灵活性差(各种监听事件需要对Vi ...

  9. 如何实现XA式、非XA式Spring分布式事务

    Spring应用的几种事务处理机制 Java Transaction API和XA协议是Spring常用的分布式事务机制,不过你可以选择选择其他的实现方式.理想的实现取决于你的应用程序使用何种资源,你 ...

  10. tomcat安装与配置文件

    一 安装tomcat 1.系统必须已安装配置JDK 安装说明参考地址:http://www.cnblogs.com/Yuanbangchen/p/5945491.html   2.将apache-to ...