MapReduce工作流多种实现方式
学习 hadoop,必不可少的就是编写 MapReduce 程序。当然,对于简单的分析程序,我们只需一个 MapReduce 任务就能搞定,然而对于比较复杂的分析程序,我们可能需要多个Job或者多个Map或者Reduce进行分析计算。 本课程我们主要学习多个 Job 或者多个 MapReduce 的编程形式。
MapReduce 的主要有以下几种编程形式。
迭代式 MapReduce
MapReduce 迭代方式,通常是将上一个 MapReduce 任务的输出作为下一个 MapReduce 任务的输入,可只保留 MapReduce 任务的最终结果,中间数据可以删除或保留,可根据业务需要自行决定。 迭代式 MapReduce 的示例代码如下所示。
Configuration conf = new Configuration(); //第一个 MapReduce 任务
Job job1 = new Job(conf,"job1");
.....
FileInputFormat.addInputPath(job1,input);//job1的输入
FileOutputFromat.setOutputPath(job1,out1);//job1的输出
job1.waitForCompletion(true); //第二个 Mapreduce 任务
Job job2 = new Job(conf,"job2");
.....
FileInputFormat.addInputPath(job2,out1);//job1的输出作为job2的输入
FileOutputFromat.setOutputPath(job2,out2);//job2 的输出
job2.waitForCompletion(true); //第三个 Mapreduce 任务
Job job3 = new Job(conf,"job3");
.....
FileInputFormat.addInputPath(job3,out2);//job2的输出作为job3的输入
FileOutputFromat.setOutputPath(job3,out3);//job3 的输出
job3.waitForCompletion(true);
.....
虽然 MapReduce 的迭代可实现多任务的执行,但是它具有如下两个缺点:
1、每次迭代,如果所有 Job 对象重复创建,代价将非常高。
2、每次迭代,数据都要写入本地,然后从本地读取,I/O和网络传输的代价比较大。
依赖关系式 MapReuce
依赖关系式 MapReduce主要是由 org.apache.hadoop.mapred.jobcontrol 包中的 JobControl 类来实现。JobControl 的实例表示一个作业的运行图, 你可以加入作业配置,然后告知 JobControl 实例作业之间的依赖关系。在一个线程中运行 JobControl 时,它将按照依赖顺序来执行这些作业。也可以查看进程, 在作业结束后,可以查询作业的所有状态和每个失败相关的错误信息。如果一个作业失败,JobControl 将不执行与之有依赖关系的后续作业。
依赖关系式 MapReuce 的示例代码如下所示。
Configuration conf1 = new Configuration();
Job job1 = new Job(conf1,"Job1");
.........//job1 其它设置 Configuration conf2 = new Configuration();
Job job2 = new Job(conf2,"Job2");
.........//job2 其它设置 Configuration conf3 = new Configuration();
Job job3 = new Job(conf3,"Job3");
.........//job3 其它设置 ControlledJob cJob1 = new ControlledJob(conf1);//构造一个 Job
cJob1.setJob(job1);//设置 MapReduce job
ControlledJob cJob2 = new ControlledJob(conf2);
cJob2.setJob(job2);
ControlledJob cJob3 = new ControlledJob(conf3);
cJob3.setJob(job3); cJob3.addDependingJob(cJob1);//设置job3和job1的依赖关系
cJob3.addDependingJob(cJob2);//设置job3和job2的依赖关系 JobControl JC = new JobControl("123");
//把三个构造的job加入到JobControl中
JC.addJob(cJob1);
JC.addJob(cJob2);
JC.addJob(cJob3);
Thread t = new Thread(JC);
t.start();
while (true) {
if (jobControl.allFinished()) {
jobControl.stop();
break;
}
}
注意:hadoop的JobControl类实现了线程Runnable接口。我们需要实例化一个线程来启动它。直接调用JobControl的run()方法,线程将无法结束。
线性链式 MapReduce
大量的数据处理任务涉及对记录的预处理和后处理。
例如:在处理信息检索的文档时,可能一步是移除 stop words(像a、the和is这样经常出现但不太有意义的词),另一步做stemming(转换一个词的不同形式为相同的形式,例如转换finishing和finished为finish)。
你可以为预处理与后处理步骤各自编写一个 MapReduce 作业,并把它们链接起来。在这些步骤中可以使用IdentityReducer(或完全不同的 Reducer)。 由于过程中每一个步骤的中间结果都需要占用I/O和存储资源,这种做法是低效的。另一种方法是自己写 mapper去预先调用所有的预处理步骤,再让reducer调用所有的后处理步骤。这将强制你采用模块化和可组合的方式来构建预处理和后处理。因此Hadoop引入了ChainMapper 和ChainReducer类来简化预处理和后处理的构成。
hadoop提供了专门的链式ChainMapper和ChainReducer来处理线性链式MapReduce任务。在Map或者Reduce阶段存在多个Mapper,这些Mapper像Linux管道一样,前一个Mapper的输出结果直接重定向到后一个Mapper的输入,形成流水线。 其调用形式如下:
... //预处理
ChainMapper.addMapper(...);
ChainReducer.setReducer(...);
ChainReducer.addMapper(...);
... //后处理
//addMapper()调用的方法形式如下:
public static void addMapper(Job job,
Class< extends Mapper> mclass,
Class< extends K1> inputKeyClass,
Class< extends V1> inputValueClass,
Class< extends K2> outputKeyClass,
Class< extends V2> outputValueClass,
Configuration conf
)
addMapper()方法有8个参数。第一个和最后一个分别为全局的Job和本地的configuration对象。第二个参数是 Mapper类,负责数据处理。余下4个参数 inputKeyClass、inputValueClass、outputKeyClass和outputValueClass是这个Mapper类中输入/输出类的类型。ChainReducer专门提供了一个setReducer()方法来设置整个作业唯一的Reducer,语法与addMapper()方法类似。
线性链式 MapReduce 的示例代码如下所示。
public void function throws IOException {
Configuration conf = new Configuration();
Job job = new Job(conf);
job.setJobName("chainjob");
job.setInputFormat(TextInputFormat.class);
job.setOutputFormat(TextOutputFormat.class);
FileInputFormat.addInputPath(job, in);
FileOutputFormat.setOutputPath(job, out);
//在作业中添加 Map1 阶段
Configuration map1conf = new Configuration(false);
ChainMapper.addMapper(job, Map1.class, LongWritable.class, Text.class,Text.class, Text.class, true, map1conf);
//在作业中添加 Map2 阶段
Configuration map2conf = new Configuration(false);
ChainMapper.addMapper(job, Map2.class, Text.class, Text.class,LongWritable.class, Text.class, true, map2conf);
//在作业中添加 Reduce 阶段
Configuration reduceconf = new Configuration(false);
ChainReducer.setReducer(job,Reduce.class,LongWritable.class,Text.class,Text.class,Text.class,true,reduceconf);
//在作业中添加 Map3 阶段
Configuration map3conf = new Configuration(false);
ChainReducer.addMapper(job,Map3.class,Text.class,Text.class,LongWritable.class,Text.class,true,map3conf);
//在作业中添加 Map4 阶段
Configuration map4conf = new Configuration(false);
ChainReducer.addMapper(job,Map4.class,LongWritable.class,Text.class,LongWritable.class,Text.class,true,map4conf);
job.waitForCompletion(true);
}
注意:对于任意一个MapReduce作业,Map和Reduce阶段可以有无限个Mapper,但是Reduce只能有一个。所以包含多个Reduce的作业,不能使用 ChainMapper/ChainReduce来完成。
MapReduce工作流多种实现方式的更多相关文章
- Spark源码分析:多种部署方式之间的区别与联系(转)
原文链接:Spark源码分析:多种部署方式之间的区别与联系(1) 从官方的文档我们可以知道,Spark的部署方式有很多种:local.Standalone.Mesos.YARN.....不同部署方式的 ...
- C#高性能TCP服务的多种实现方式
哎~~ 想想大部分园友应该对 "高性能" 字样更感兴趣,为了吸引眼球所以标题中一定要突出,其实我更喜欢的标题是<猴赛雷,C#编写TCP服务的花样姿势!>. 本篇文章的主 ...
- C#开发微信门户及应用(11)--微信菜单的多种表现方式介绍
在前面一系列文章中,我们可以看到微信自定义菜单的重要性,可以说微信公众号账号中,菜单是用户的第一印象,我们要规划好这些菜单的内容,布局等信息.根据微信菜单的定义,我们可以看到,一般菜单主要分为两种,一 ...
- 顺序表及其多种实现方式 --- C/C++
所谓顺序表,即线性表的顺序存储结构.下面给出的是数据结构---线性表的定义. ADT List{ 数据对象: 线性表的数据对象的集合为{a1,a2,a3,...,an},每个元素的类型为ElemTyp ...
- Android开发中怎样调用系统Email发送邮件(多种调用方式)
在Android中调用其他程序进行相关处理,几乎都是使用的Intent,所以,Email也不例外,所谓的调用Email,只是说Email可以接收Intent并做这些事情 我们都知道,在Android中 ...
- Android数据加密概述及多种加密方式 聊天记录及账户加密 提供高质量的数据保护
Android数据加密概述及多种加密方式 聊天记录及账户加密 提供高质量的数据保护 数据加密又称password学,它是一门历史悠久的技术,指通过加密算法和加密密钥将明文转变为密文.而解密则是通过解密 ...
- spring 文件模板下载多种实现方式
针对于文件的下载,我们有很多种实现方式.业务场景是这样子的,要实现Excel文件的导入和导出功能,问题对于java的POI操作没有问题,所以实现文件的下载就相对简单,只需要从数据库取出相关的数据,针对 ...
- C# 高性能 TCP 服务的多种实现方式
哎~~ 想想大部分园友应该对 "高性能" 字样更感兴趣,为了吸引眼球所以标题中一定要突出,其实我更喜欢的标题是<猴赛雷,C# 编写 TCP 服务的花样姿势!>. 本篇文 ...
- SVN服务的模式和多种访问方式 多种访问原理图解与优缺点
SVN企业应用场景 SVN任是当前企业的主流.git正在发展,未来会成为主流.如果大家精力足够,建议同时掌握. 1.4运维人员掌握版本管理 对于版本管理系统,运维人员需要掌握的技术点: 1.安装.部署 ...
随机推荐
- 【原】彻底解决WPS弹出热点广告、WPS购物图标的办法
一直用WPS,但一直有一个问题迟迟没有解决,那就是讨厌的WPS广告问题! 每次开机都会自动在托盘上闪烁图标:“WPS购物”和“WPS热点”! 用自定义托盘图标隐藏都不管用,自动又会给改回来!这简直是流 ...
- C#设计模式-迭代器模式
一. 迭代器(Iterator)模式 迭代器是针对集合对象而生的,对于集合对象而言,必然涉及到集合元素的添加删除操作,同时也肯定支持遍历集合元素的操作,我们此时可以把遍历操作也放在集合对象中,但这样的 ...
- RowVersion数据类型
RowVersion数据类型是系统自动生成的,唯一的,二进制数字,数值和binary(8)相同,RowVersion通常用作给Table的数据行加版本戳,存储大小为 8 个字节.RowVersion数 ...
- ASP.NET MVC5+EF6+EasyUI 后台管理系统(28)-系统小结
系列目录 我们从第一节搭建框架开始直到二十七节,权限管理已经告一段落,相信很多有跟上来的园友,已经搭配完成了,并能从模块创建授权分配和开发功能了 我没有发布所有源代码,但在14节发布了最后的一次源代码 ...
- 【目录】本博客其他.NET开源项目文章目录
本博客所有文章分类的总目录链接:本博客博文总目录-实时更新 1.本博客其他.NET开源项目文章目录 37..NET平台开源项目速览(17)FluentConsole让你的控制台酷起来 36..NET平 ...
- SQL Server-数据类型(七)
前言 前面几篇文章我们讲解了索引有关知识,这一节我们再继续我们下面内容讲解,简短的内容,深入的理解,Always to review the basics. 数据类型 SQL Server支持两种字符 ...
- Quartz.NET Windows 服务示例
想必大家在项目中处理简单的后台持续任务或者定时触发任务的时候均使用 Thread 或者 Task 来完成,但是项目中的这种需求一旦多了的话就得将任务调度引入进来了,那今天就简单的介绍一下 Quartz ...
- 面向对象的JS(一)
JavaScript是弱类型,可变性强 /*JavaScript和其他的语言类似,也是面向对象,自然也就是存在类和对象(对象是类的实例化)*/ //1.JS对象 var empty = {}; //没 ...
- web前端性能调优
最近2个月一直在做手机端和电视端开发,开发的过程遇到过各种坑.弄到快元旦了,终于把上线了.2个月干下来满满的的辛苦,没有那么忙了自己准备把前端的性能调优总结以下,以方便以后自己再次使用到的时候得于得心 ...
- ASP.NET Core 中文文档 第一章 入门
原文:Getting Started 翻译:娄宇(Lyrics) 校对:刘怡(AlexLEWIS) 1.安装 .NET Core 2.创建一个新的 .NET Core 项目: mkdir aspnet ...