Description

Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N). 



We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change
it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions. 



1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2). 

2. Q x y (1 <= x, y <= n) querys A[x, y]. 

Input

The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case. 



The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2
y2", which has been described above. 

Output

For each querying output one line, which has an integer representing A[x, y]. 



There is a blank line between every two continuous test cases. 

Sample Input

1
2 10
C 2 1 2 2
Q 2 2
C 2 1 2 1
Q 1 1
C 1 1 2 1
C 1 2 1 2
C 1 1 2 2
Q 1 1
C 1 1 2 1
Q 2 1

Sample Output

1
0
0
1

Source


这道题确实非常经典,尤其在这个二进制的计算方面
具体的能够參考《浅谈信息学竞赛中的“0”和“1”》此论文。网上非常多说的并不具体,大多仅仅介绍了翻转。并没有介绍为何sum(x,y)%2能得到结果
论文里非常具体的证明了

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <math.h>
#include <bitset>
#include <list>
#include <algorithm>
#include <climits>
using namespace std; #define lson 2*i
#define rson 2*i+1
#define LS l,mid,lson
#define RS mid+1,r,rson
#define UP(i,x,y) for(i=x;i<=y;i++)
#define DOWN(i,x,y) for(i=x;i>=y;i--)
#define MEM(a,x) memset(a,x,sizeof(a))
#define W(a) while(a)
#define gcd(a,b) __gcd(a,b)
#define LL long long
#define N 1005
#define INF 0x3f3f3f3f
#define EXP 1e-8
#define lowbit(x) (x&-x)
const int mod = 1e9+7; int c[N][N],n,m,cnt,s,t;
int a[N][N]; int sum(int x,int y)
{
int ret = 0;
int i,j;
for(i = x;i>=1;i-=lowbit(i))
{
for(j = y;j>=1;j-=lowbit(j))
{
ret+=c[i][j];
}
}
return ret;
} void add(int x,int y)
{
int i,j;
for(i = x;i<=n;i+=lowbit(i))
{
for(j = y;j<=n;j+=lowbit(j))
{
c[i][j]++;
}
}
} int main()
{
int i,j,x,y,ans,t;
int x1,x2,y1,y2;
char op[10];
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
MEM(c,0);
MEM(a,0);
while(m--)
{
scanf("%s",op);
if(op[0]=='C')
{
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
x1++,y1++,x2++,y2++;
add(x2,y2);
add(x1-1,y1-1);
add(x2,y1-1);
add(x1-1,y2);
}
else
{
scanf("%d%d",&x1,&y1);
x2 = x1,y2 = y1;
x1++,y1++,x2++,y2++;
printf("%d\n",sum(x1,y1));
}
}
printf("\n");
} return 0;
}

POJ2155:Matrix(二维树状数组,经典)的更多相关文章

  1. [poj2155]Matrix(二维树状数组)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 25004   Accepted: 9261 Descripti ...

  2. poj----2155 Matrix(二维树状数组第二类)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 16950   Accepted: 6369 Descripti ...

  3. 【poj2155】Matrix(二维树状数组区间更新+单点查询)

    Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the ...

  4. poj2155一个二维树状数组

                                                                                                         ...

  5. POJ 2155 Matrix(二维树状数组,绝对具体)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20599   Accepted: 7673 Descripti ...

  6. POJ 2155:Matrix 二维树状数组

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 21757   Accepted: 8141 Descripti ...

  7. poj 2155 Matrix (二维树状数组)

    题意:给你一个矩阵开始全是0,然后给你两种指令,第一种:C x1,y1,x2,y2 就是将左上角为x1,y1,右下角为x2,y2,的这个矩阵内的数字全部翻转,0变1,1变0 第二种:Q x1 y1,输 ...

  8. POJ2155【二维树状数组,区间修改,点查询?】【又被输入输出坑】

    这题反反复复,到现在才过. 这道题就是树状数组的逆用,用于修改区间内容,查询点的值. 如果单纯就这个奇偶数来判的话,似乎这个思路比较好理解. 看了一下国家集训队论文(囧),<关于0与1在信息学奥 ...

  9. Matrix 二维树状数组的第二类应用

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17976   Accepted: 6737 Descripti ...

随机推荐

  1. 使用JDBC进行数据库的事务操作(1)

    本篇讲述数据库中非常重要的事务概念和如何使用MySQL命令行窗口来进行数据库的事务操作.下一篇会讲述如何使用JDBC进行数据库的事务操作. 事务是指数据库中的一组逻辑操作,这个操作的特点就是在该组逻辑 ...

  2. K. Perpetuum Mobile

    The world famous scientist Innokentiy almost finished the creation of perpetuum mobile. Its main par ...

  3. Oracle 排序规则

    <pre name="code" class="html">SQL> select * from t1 where id>=1 and ...

  4. NetBeans + Xdebug 调试WordPress

    用NetBeans进行WordPress的相关开发和定制很顺手,配合Xdebug后调试起来也很方便. 详细配置过程如下(本例中Xampp安装目录为D:\xampp): 1: 下载xdebug(版本需匹 ...

  5. Mac OS设置rootpassword

    不知怎么忘记mac os系统的rootpassword了 方法一: 首先,启动机器,启动时按住Apple和S键,以单用户模式(single user mode)进入系统.输入:mount -uw / ...

  6. Lucene.Net 2.3.1开发介绍 —— 三、索引(二)

    原文:Lucene.Net 2.3.1开发介绍 -- 三.索引(二) 2.索引中用到的核心类 在Lucene.Net索引开发中,用到的类不多,这些类是索引过程的核心类.其中Analyzer是索引建立的 ...

  7. jsp:include怎么设置才能正确显示包含的页面呢

    1.项目的所有jsp都放在WEB-INF文件夹之下,使用的是SpirngMVC进行了过滤,jsp:include只能引入WEB-INF外部的jsp文件,对于改变后缀显示为htm的jsp的WEB-INF ...

  8. [置顶] 简单解析linux下进程通信方法

    linux下的进程通信手段基本上是从Unix平台上的进程通信手段继承而来的.而对Unix发展做出重大贡献的两大主力AT&T的贝尔实验室及BSD(加州大学伯克利分校的伯克利软件发布中心)在进程间 ...

  9. Swift 可展开可收缩的表视图

    主要学习与运行效果 在本节的内容中,我们将通过一个具体实例的实现过程,详细讲解在表视图当中,如何创建一个可展开可收缩的表视图.为了让读者有着更为直观的印象,我们将通过模仿QQ好友列表来实现这个效果. ...

  10. ANTS Performance Profiler 破解使用

    http://blog.csdn.net/wangjia184/article/details/7746089