利用tensorflow实现数据的线性回归

**导入相关库**

import tensorflow as tf
import numpy
import matplotlib.pyplot as plt
rng = numpy.random

参数设置

learning_rate = 0.01
training_epochs = 1000
display_step = 50

训练数据

train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,
7.042,10.791,5.313,7.997,5.654,9.27,3.1])
train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,
2.827,3.465,1.65,2.904,2.42,2.94,1.3])
n_samples = train_X.shape[0]

tf图输入

X = tf.placeholder("float")
Y = tf.placeholder("float")

设置权重和偏置

W = tf.Variable(rng.randn(), name="weight")
b = tf.Variable(rng.randn(), name="bias")

构建线性模型

pred = tf.add(tf.multiply(X, W), b)

均方误差

cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)

梯度下降

optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

初始化变量

init = tf.global_variables_initializer()

开始训练

with tf.Session() as sess:
sess.run(init)
# 适合所有训练数据
for epoch in range(training_epochs):
for (x, y) in zip(train_X, train_Y):
sess.run(optimizer, feed_dict={X: x, Y: y})
# 显示每个纪元步骤的日志
if (epoch+1) % display_step == 0:
c = sess.run(cost, feed_dict={X: train_X, Y:train_Y})
print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \
"W=", sess.run(W), "b=", sess.run(b))
print("Optimization Finished!")
training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
print("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n')
# 画图显示
plt.plot(train_X, train_Y, 'ro', label='Original data')
plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
plt.legend()
plt.show()

结果展示

Epoch: 0050 cost= 0.183995649 W= 0.43250677 b= -0.5143978

Epoch: 0100 cost= 0.171630666 W= 0.42162812 b= -0.43613702

Epoch: 0150 cost= 0.160693780 W= 0.41139638 b= -0.36253116

Epoch: 0200 cost= 0.151019916 W= 0.40177315 b= -0.2933027

Epoch: 0250 cost= 0.142463341 W= 0.39272234 b= -0.22819161

Epoch: 0300 cost= 0.134895071 W= 0.3842099 b= -0.16695316

Epoch: 0350 cost= 0.128200993 W= 0.37620357 b= -0.10935676

Epoch: 0400 cost= 0.122280121 W= 0.36867347 b= -0.055185713

Epoch: 0450 cost= 0.117043234 W= 0.36159125 b= -0.004236537

Epoch: 0500 cost= 0.112411365 W= 0.3549302 b= 0.04368245

Epoch: 0550 cost= 0.108314596 W= 0.34866524 b= 0.08875148

Epoch: 0600 cost= 0.104691163 W= 0.34277305 b= 0.13114017

Epoch: 0650 cost= 0.101486407 W= 0.33723122 b= 0.17100765

Epoch: 0700 cost= 0.098651998 W= 0.33201888 b= 0.20850417

Epoch: 0750 cost= 0.096145160 W= 0.32711673 b= 0.24377018

Epoch: 0800 cost= 0.093927994 W= 0.32250607 b= 0.27693948

Epoch: 0850 cost= 0.091967128 W= 0.31816947 b= 0.308136

Epoch: 0900 cost= 0.090232961 W= 0.31409115 b= 0.33747625

Epoch: 0950 cost= 0.088699281 W= 0.31025505 b= 0.36507198

Epoch: 1000 cost= 0.087342896 W= 0.30664718 b= 0.39102668

Optimization Finished!

Training cost= 0.087342896 W= 0.30664718 b= 0.39102668


参考:

Author: Aymeric Damien

Project: https://github.com/aymericdamien/TensorFlow-Examples/

机器学习系列-tensorflow-03-线性回归Linear Regression的更多相关文章

  1. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  2. 机器学习 (一) 单变量线性回归 Linear Regression with One Variable

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...

  3. ISLR系列:(1)线性回归 Linear Regression

       Linear Regression 此博文是 An Introduction to Statistical Learning with Applications in R 的系列读书笔记,作为本 ...

  4. [笔记]机器学习(Machine Learning) - 01.线性回归(Linear Regression)

    线性回归属于回归问题.对于回归问题,解决流程为: 给定数据集中每个样本及其正确答案,选择一个模型函数h(hypothesis,假设),并为h找到适应数据的(未必是全局)最优解,即找出最优解下的h的参数 ...

  5. 吴恩达机器学习(二) 单变量线性回归(Linear Regression with one variable)

    一.模型表示 1.一些术语 如下图,房价预测.训练集给出了房屋面积和价格,下面介绍一些术语: x:输入变量或输入特征(input variable/features). y:输出变量或目标变量(out ...

  6. 吴恩达机器学习笔记8-多变量线性回归(Linear Regression with Multiple Variables)--多维特征

    我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(

  7. 吴恩达机器学习笔记1-单变量线性回归(Linear Regression with One Variable)

    在监督学习中我们有一个数据集,这个数据集被称训练集.

  8. TensorFlow 学习笔记(1)----线性回归(linear regression)的TensorFlow实现

    此系列将会每日持续更新,欢迎关注 线性回归(linear regression)的TensorFlow实现 #这里是基于python 3.7版本的TensorFlow TensorFlow是一个机器学 ...

  9. 机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)

    机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题  如果有多个特征值 那么这种情况下  假设h表示 ...

随机推荐

  1. Sequence Number

    1570: Sequence Number 时间限制: 1 Sec  内存限制: 1280 MB 题目描述 In Linear algebra, we have learned the definit ...

  2. python基础复习

    复习-基础 一.review-base 其他语言吗和python的对比 c vs Python c语言是python的底层实现,解释器就是由python编写的. c语言开发的程序执行效率高,开发现率低 ...

  3. MS-DOS运行java工程

    D:\SourceCode\mailProxy\out\production\examples>java -classpath .;org\roger\stud y\mailClient;D:\ ...

  4. 20165206 2017-2018-2 《Java程序设计》第五周学习总结

    20165206 2017-2018-2 <Java程序设计>第五周学习总结 教材学习内容总结 内部类:支持在一个类中定义另一个类的类. 外嵌类:包含内部类的类,称为内部类的外嵌类. 匿名 ...

  5. h5在手机端实现简单复制

    <a href="https://blog-static.cnblogs.com/files/ruanqin/clipboard.min.js">下载clipborrd ...

  6. hive建表范例

    建表范例:支持update和delete create table aaa( id string, visitor_name string ) clustered by(id) into bucket ...

  7. javac选项以递归方式编译给定目录下的所有Java文件 - IT屋-程序员软件开发技术分享社区

    http://www.it1352.com/539276.html #Linux $ find -name“* .java”> sources.txt $ javac @ sources.txt ...

  8. 【BZOJ4764】弹飞大爷

    题解: 这个应该还是比较简单的 首先比较容易想到用lct来维护 我们可以建立一个特殊点 然后我们要处理环 其实只要判断它和不和这个特殊点联通就行了 那么当它不是环了我们怎么还原呢 只要对每个在根节点记 ...

  9. c_数据结构_栈的实现

    #include<stdio.h> #include<stdlib.h> #define STACK_INIT_SIZE 100 #define STACKINCREMENT ...

  10. root用户无法通过ssh连接Linux系统

    ssh协议为了安全,有些版本默认禁止root用户的登陆 cd /etc/ssh 编辑sshd_config文件 cat sshd_config | grep PermitRootLogin Permi ...