小结:

1、缓存存储位置:数据库、文件系统、内存

2、通过缓存前缀实现跨服务器缓存

Django’s cache framework | Django documentation | Django https://docs.djangoproject.com/en/2.2/topics/cache/

The cache system requires a small amount of setup. Namely, you have to tell it where your cached data should live – whether in a database, on the filesystem or directly in memory. This is an important decision that affects your cache’s performance; yes, some cache types are faster than others.

In this example, Memcached is running on localhost (127.0.0.1) port 11211, using the python-memcachedbinding:

CACHES = {
'default': {
'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',
'LOCATION': '127.0.0.1:11211',
}
}

In this example, Memcached is available through a local Unix socket file /tmp/memcached.sock using the python-memcached binding:

CACHES = {
'default': {
'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',
'LOCATION': 'unix:/tmp/memcached.sock',
}
}

When using the pylibmc binding, do not include the unix:/ prefix:

CACHES = {
'default': {
'BACKEND': 'django.core.cache.backends.memcached.PyLibMCCache',
'LOCATION': '/tmp/memcached.sock',
}
}

One excellent feature of Memcached is its ability to share a cache over multiple servers. This means you can run Memcached daemons on multiple machines, and the program will treat the group of machines as a singlecache, without the need to duplicate cache values on each machine. To take advantage of this feature, include all server addresses in LOCATION, either as a semicolon or comma delimited string, or as a list.

In this example, the cache is shared over Memcached instances running on IP address 172.19.26.240 and 172.19.26.242, both on port 11211:

CACHES = {
'default': {
'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',
'LOCATION': [
'172.19.26.240:11211',
'172.19.26.242:11211',
]
}
}

In the following example, the cache is shared over Memcached instances running on the IP addresses 172.19.26.240 (port 11211), 172.19.26.242 (port 11212), and 172.19.26.244 (port 11213):

CACHES = {
'default': {
'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',
'LOCATION': [
'172.19.26.240:11211',
'172.19.26.242:11212',
'172.19.26.244:11213',
]
}
}

A final point about Memcached is that memory-based caching has a disadvantage: because the cached data is stored in memory, the data will be lost if your server crashes. Clearly, memory isn’t intended for permanent data storage, so don’t rely on memory-based caching as your only data storage. Without a doubt, none of the Django caching backends should be used for permanent storage – they’re all intended to be solutions for caching, not storage – but we point this out here because memory-based caching is particularly temporary.

Cache key prefixing

If you are sharing a cache instance between servers, or between your production and development environments, it’s possible for data cached by one server to be used by another server. If the format of cached data is different between servers, this can lead to some very hard to diagnose problems.

To prevent this, Django provides the ability to prefix all cache keys used by a server. When a particular cache key is saved or retrieved, Django will automatically prefix the cache key with the value of the KEY_PREFIXcache setting.

By ensuring each Django instance has a different KEY_PREFIX, you can ensure that there will be no collisions in cache values.

from django.core.cache import cache

Django’s cache framework的更多相关文章

  1. Django之REST framework源码分析

    前言: Django REST framework,是1个基于Django搭建 REST风格API的框架: 1.什么是API呢? API就是访问即可获取数据的url地址,下面是一个最简单的 Djang ...

  2. 使用Django.core.cache操作Memcached导致性能不稳定的分析过程

    使用Django.core.cache操作Memcached导致性能不稳定的分析过程 最近测试一项目,用到了Nginx缓存服务,那可真是快啊!2Gb带宽都轻易耗尽. 不过Api接口无法简单使用Ngin ...

  3. django的cache

    使用文件缓存 #settings.py   CACHES = {   'default': {   'BACKEND': 'django.core.cache.backends.filebased.F ...

  4. Django 缓存 cache基本使用

    1.设置setting REDIS_HOST = '10.133.3.26' REDIS_POST = 6379 REDIS_DATABASE = 3 REDIS_PASSWORD = '' CACH ...

  5. 使用django 的cache设置token的有效期

    from rest_framework.authentication import BaseAuthentication from rest_framework.exceptions import A ...

  6. 基于Django的Rest Framework框架的解析器

    本文目录 一 解析器的作用 二 全局使用解析器 三 局部使用解析器 四 源码分析 回到目录 一 解析器的作用 根据请求头 content-type 选择对应的解析器对请求体内容进行处理. 有appli ...

  7. Django之Rest Framework框架

    一.什么是RESTful REST与技术无关,代表的是一种软件架构风格,REST是Representational State Transfer的简称,中文翻译为“表征状态转移” REST从资源的角度 ...

  8. django的rest framework框架——分页、视图、路由、渲染器

    一.rest framework的分页 1.使用rest framework内置类PageNumberPagination实现分类 from django.conf.urls import url f ...

  9. django的rest framework框架——版本、解析器、序列化

    一.rest framework的版本使用 1.版本可以写在URL中,通过GET传参,如 http://127.0.0.1:8082/api/users/?version=v1 (1)自定义类获取版本 ...

随机推荐

  1. 同步IO、异步IO、阻塞IO、非阻塞IO之间的联系与区别

    POSIX 同步IO.异步IO.阻塞IO.非阻塞IO,这几个词常见于各种各样的与网络相关的文章之中,往往不同上下文中它们的意思是不一样的,以致于我在很长一段时间对此感到困惑,所以想写一篇文章整理一下. ...

  2. mac 使用笔记日志

    telnet安装 安装homebrew /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/i ...

  3. Mybatis中自定义映射xml参数传递使用

    在使用mybatis框架时,大多时候自动生成的mapper.xml文件能满足我们所需的数据库操作,但一些情况下还是需要我们自己写sql:为了加深印象,总结了下参数传递的方式以及各个关键字的含义如下: ...

  4. 深入理解Linux内存分配

    深入理解Linux内存分配 为了写一个用户层程序,你也许会声明一个全局变量,这个全局变量可能是一个int类型也可能是一个数组,而声明之后你有可能会先初始化它,也有可能放在之后用到它的时候再初始化.除此 ...

  5. python 验证码识别示例(一) 某个网站验证码识别

    某个招聘网站的验证码识别,过程如下 一: 原始验证码: 二: 首先对验证码进行分析,该验证码的数字颜色有变化,这个就是识别这个验证码遇到的比较难的问题,解决方法是使用PIL 中的  getpixel  ...

  6. ServiceMesh究竟解决什么问题?

    服务网格(ServiceMesh)这两年异常之火,号称是下一代微服务架构,互联网公司经常使用的是微服务分层架构. 随着数据量不断增大,吞吐量不断增加,业务越来越复杂,服务的个数会越来越多,分层会越来越 ...

  7. 【原创 Hadoop&Spark 动手实践 3】Hadoop2.7.3 MapReduce理论与动手实践

    开始聊MapReduce,MapReduce是Hadoop的计算框架,我学Hadoop是从Hive开始入手,再到hdfs,当我学习hdfs时候,就感觉到hdfs和mapreduce关系的紧密.这个可能 ...

  8. vue实例-转载

    http://blog.csdn.net/yuanyuanispeak/article/details/73526795

  9. Paxos 实现日志复制同步(Basic Paxos)

    Paxos 实现日志复制同步 本篇文章以 John Ousterhout(斯坦福大学教授) 和 Diego Ongaro(斯坦福大学获得博士学位,Raft算法发明人) 在 Youtube 上的讲解视频 ...

  10. input 呼起数字键盘

    1. Android,定义 type="number" 2. iOS,定义 style="ime-mode: disabled;" 注,呼起数字键盘后,用户输入 ...