Luogu3164 CQOI2014 和谐矩阵 异或高斯消元
题意:给出$N,M$,试构造一个$N \times M$的非全$0$矩阵,其中所有格子都满足:它和它上下左右四个格子的权值之和为偶数。$N , M \leq 40$
可以依据题目中的条件列出有$N \times M$的元、$N \times M$个方程的异或方程组(异或方程组就是所有位置都是$1$或$0$,最右边一列的答案需要通过异或互相消除的方程组,一般在$mod\,2$意义下产生)。
理论上元和方程组数量一致的时候每一个元都是有唯一解的,但是在有解的情况下,其中一些方程是线性相关的,这意味着消到最后,某一些行会变成全$0$(如果不是很清楚可以像$vegetable chicken$我一样打一波$3 \times 3$和$4 \times 4$的表)。我们可以把行全$0$的元(又称之为自由元)全部设为$1$,因为它们是多少对方程最后有无解没有关系,然后一步步把上面推出来即可。
因为复杂度为$1600^3$平常的高斯消元速度很慢,所以可以用神仙$STL\,bitset$优化
#include<bits/stdc++.h> using namespace std; inline int read(){ ; ; char c = getchar(); while(c != EOF && !isdigit(c)){ if(c == '-') f = ; c = getchar(); } while(c != EOF && isdigit(c)){ a = (a << ) + (a << ) + (c ^ '); c = getchar(); } return f ? -a : a; } ][] = {,,,-,,,-,,,}; bitset < > gauss[] , ans; int main(){ #ifdef LG freopen("3164.in" , "r" , stdin); freopen("3164.out" , "w" , stdout); #endif int M , N; cin >> M >> N; ; i < M ; i++) ; j < N ; j++) ; k < ; k++) ] >= && i + dir[k][] < M && j + dir[k][] >= && j + dir[k][] < N) gauss[i * N + j][(i + dir[k][]) * N + j + dir[k][]] = ; ; ; i < M * N ; i++){ int j = now; while(j < M * N && !gauss[j][i]) j++; if(j == M * N) continue; if(j != now) swap(gauss[now] , gauss[j]); while(++j < M * N) if(gauss[j][i]) gauss[j] ^= gauss[now]; now++; } ; i >= ; i--){ if(!gauss[i][i]) ans[i] = ; if(ans[i]) ; j >= ; j--) if(gauss[j][i]) ans[j] = ans[j] ^ ; } ; i < M ; i++){ ; j < N ; j++){ putchar(ans[i * N + j] + ); putchar(' '); } putchar('\n'); } ; }
Luogu3164 CQOI2014 和谐矩阵 异或高斯消元的更多相关文章
- POJ 1222【异或高斯消元|二进制状态枚举】
题目链接:[http://poj.org/problem?id=1222] 题意:Light Out,给出一个5 * 6的0,1矩阵,0表示灯熄灭,反之为灯亮.输出一种方案,使得所有的等都被熄灭. 题 ...
- SGU 260.Puzzle (异或高斯消元)
题意: 有n(<200)个格子,只有黑白两种颜色.可以通过操作一个格子改变它和其它一些格子的颜色.给出改变的关系和n个格子的初始颜色,输出一种操作方案使所有格子的颜色相同. Solution: ...
- [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)
In some countries building highways takes a lot of time... Maybe that's because there are many possi ...
- BZOJ4031 [HEOI2015]小Z的房间 【矩阵树定理 + 高斯消元】
题目链接 BZOJ4031 题解 第一眼:这不裸的矩阵树定理么 第二眼:这个模\(10^9\)是什么鬼嘛QAQ 想尝试递归求行列式,发现这是\(O(n!)\)的.. 想上高斯消元,却又处理不了逆元这个 ...
- poj1830开关问题——异或高斯消元
题目:http://poj.org/problem?id=1830 根据题意,构造出n元方程组: a(1,1)x1 ^ a(1,2)x2 ^ a(1,3)x3 ... a(1,n)xn = st1 ^ ...
- P3317 [SDOI2014]重建 变元矩阵树定理 高斯消元
传送门:https://www.luogu.org/problemnew/show/P3317 这道题的推导公式还是比较好理解的,但是由于这个矩阵是小数的,要注意高斯消元方法的使用: #include ...
- POJ1830(异或高斯消元)
对于某个开关,都有n个选项可能影响它的结果,如果会影响,则系数为1,否则系数为0:最后得到自由元的个数,自由元可选0也可选1. #include <cstdio> #include < ...
- 【BZOJ3534】【Luogu P3317】 [SDOI2014]重建 变元矩阵树,高斯消元
题解看这里,主要想说一下以前没见过的变元矩阵树还有前几个题见到的几个小细节. 邻接矩阵是可以带权值的.求所有生成树边权和的时候我们有一个基尔霍夫矩阵,是度数矩阵减去邻接矩阵.而所谓变元矩阵树实际上就是 ...
- Wannafly Camp 2020 Day 1D 生成树 - 矩阵树定理,高斯消元
给出两幅 \(n(\leq 400)\) 个点的无向图 \(G_1 ,G_2\),对于 \(G_1\) 的每一颗生成树,它的权值定义为有多少条边在 \(G_2\) 中出现.求 \(G_1\) 所有生成 ...
随机推荐
- js+bootstrap实现分页页码
制作page.jsp,在其他页码引入,只需把最外层的form标签的id设置为myForm: 其中 totalPages:共有多少页:totalElements:共有有多少条记录:currentPage ...
- form的重置reset
HTML中Form表单的reset方法被用来重置用户所输入的内容,以前一直误以为其是单纯的将input等输入项中的值清空. 但实际上不是这样的,reset方法的本质是将input等输入项中的内容还原为 ...
- matlab练习程序(高斯牛顿法最优化)
计算步骤如下: 图片来自<视觉slam十四讲>6.2.2节. 下面使用书中的练习y=exp(a*x^2+b*x+c)+w这个模型验证一下,其中w为噪声,a.b.c为待解算系数. 代码如下: ...
- 02-OpenLDAP配置
OpenLDAP配置 在OpenLDAP 2.4版本中,配置OpenLDAP的方法有两种:一种通过修改配置文件实现配置,另一种通过修改数据库的形式完成配置. 通过配置数据库完成各种配置,属于动态配置且 ...
- SQL Server 2005详细安装过程及配置
说明:个人感觉SQL Server 2005是目前所有的SQL Server版本当中最好用的一个版本了,原因就是这个版本比起其它版本来说要安装简单,操作简便,只可惜这个版本只能在Windows7或者低 ...
- 【HANA系列】SAP HANA XS使用Data Services查询CDS实体【一】
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[HANA系列]SAP HANA XS使用Dat ...
- MySQL 8.0 —— 数据字典
1.简介 MySQL 8.0 将数据库元信息都存放于InnoDB存储引擎表中,在之前版本的MySQL中,数据字典不仅仅存放于特定的存储引擎表中,还存放于元数据文件.非事务性存储引擎表中.本文将会介绍M ...
- python 序列化pickle 和 encode的区别
我们把变量从内存中变成可存储或传输的过程称之为序列化. 序列化之后,就可以把序列化后的内容写入磁盘,或者通过网络传输到别的机器上. 反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即un ...
- Orcale日期函数to_date(),to_char()
日期转换的两个函数分别是to_date()和to_char(),to_date() 作用将字符类型按一定格式转化为日期类型, to_char() 将日期转按一定格式换成字符类型 其中当时间需要精确的时 ...
- @property括号内属性讲解
一.前言 一个object的属性允许其他object监督和改变他的状态.但是在一个设计良好的面向对象程序中,直接访问一个object的内部状态是不可能的.相反,存取器(getter sett ...