传送门

题意:给出$N,M$,试构造一个$N \times M$的非全$0$矩阵,其中所有格子都满足:它和它上下左右四个格子的权值之和为偶数。$N , M \leq 40$


可以依据题目中的条件列出有$N \times M$的元、$N \times M$个方程的异或方程组(异或方程组就是所有位置都是$1$或$0$,最右边一列的答案需要通过异或互相消除的方程组,一般在$mod\,2$意义下产生)。

理论上元和方程组数量一致的时候每一个元都是有唯一解的,但是在有解的情况下,其中一些方程是线性相关的,这意味着消到最后,某一些行会变成全$0$(如果不是很清楚可以像$vegetable chicken$我一样打一波$3 \times 3$和$4 \times 4$的表)。我们可以把行全$0$的元(又称之为自由元)全部设为$1$,因为它们是多少对方程最后有无解没有关系,然后一步步把上面推出来即可。

因为复杂度为$1600^3$平常的高斯消元速度很慢,所以可以用神仙$STL\,bitset$优化

 #include<bits/stdc++.h>
 using namespace std;

 inline int read(){
     ;
     ;
     char c = getchar();
     while(c != EOF && !isdigit(c)){
         if(c == '-')
             f = ;
         c = getchar();
     }
     while(c != EOF && isdigit(c)){
         a = (a << ) + (a << ) + (c ^ ');
         c = getchar();
     }
     return f ? -a : a;
 }

 ][] = {,,,-,,,-,,,};
 bitset <  > gauss[] , ans;

 int main(){
 #ifdef LG
     freopen("3164.in" , "r" , stdin);
     freopen("3164.out" , "w" , stdout);
 #endif
     int M , N;
     cin >> M >> N;
      ; i < M ; i++)
          ; j < N ; j++)
              ; k <  ; k++)
                 ] >=  && i + dir[k][] < M && j + dir[k][] >=  && j + dir[k][] < N)
                     gauss[i * N + j][(i + dir[k][]) * N + j + dir[k][]] = ;
     ;
      ; i < M * N ; i++){
         int j = now;
         while(j < M * N && !gauss[j][i])
             j++;
         if(j == M * N)
             continue;
         if(j != now)
             swap(gauss[now] , gauss[j]);
         while(++j < M * N)
             if(gauss[j][i])
                 gauss[j] ^= gauss[now];
         now++;
     }
      ; i >=  ; i--){
         if(!gauss[i][i])
             ans[i] = ;
         if(ans[i])
              ; j >=  ; j--)
                 if(gauss[j][i])
                     ans[j] = ans[j] ^ ;
     }
      ; i < M ; i++){
          ; j < N ; j++){
             putchar(ans[i * N + j] + );
             putchar(' ');
         }
         putchar('\n');
     }
     ;
 }

Luogu3164 CQOI2014 和谐矩阵 异或高斯消元的更多相关文章

  1. POJ 1222【异或高斯消元|二进制状态枚举】

    题目链接:[http://poj.org/problem?id=1222] 题意:Light Out,给出一个5 * 6的0,1矩阵,0表示灯熄灭,反之为灯亮.输出一种方案,使得所有的等都被熄灭. 题 ...

  2. SGU 260.Puzzle (异或高斯消元)

    题意: 有n(<200)个格子,只有黑白两种颜色.可以通过操作一个格子改变它和其它一些格子的颜色.给出改变的关系和n个格子的初始颜色,输出一种操作方案使所有格子的颜色相同. Solution: ...

  3. [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)

    In some countries building highways takes a lot of time... Maybe that's because there are many possi ...

  4. BZOJ4031 [HEOI2015]小Z的房间 【矩阵树定理 + 高斯消元】

    题目链接 BZOJ4031 题解 第一眼:这不裸的矩阵树定理么 第二眼:这个模\(10^9\)是什么鬼嘛QAQ 想尝试递归求行列式,发现这是\(O(n!)\)的.. 想上高斯消元,却又处理不了逆元这个 ...

  5. poj1830开关问题——异或高斯消元

    题目:http://poj.org/problem?id=1830 根据题意,构造出n元方程组: a(1,1)x1 ^ a(1,2)x2 ^ a(1,3)x3 ... a(1,n)xn = st1 ^ ...

  6. P3317 [SDOI2014]重建 变元矩阵树定理 高斯消元

    传送门:https://www.luogu.org/problemnew/show/P3317 这道题的推导公式还是比较好理解的,但是由于这个矩阵是小数的,要注意高斯消元方法的使用: #include ...

  7. POJ1830(异或高斯消元)

    对于某个开关,都有n个选项可能影响它的结果,如果会影响,则系数为1,否则系数为0:最后得到自由元的个数,自由元可选0也可选1. #include <cstdio> #include < ...

  8. 【BZOJ3534】【Luogu P3317】 [SDOI2014]重建 变元矩阵树,高斯消元

    题解看这里,主要想说一下以前没见过的变元矩阵树还有前几个题见到的几个小细节. 邻接矩阵是可以带权值的.求所有生成树边权和的时候我们有一个基尔霍夫矩阵,是度数矩阵减去邻接矩阵.而所谓变元矩阵树实际上就是 ...

  9. Wannafly Camp 2020 Day 1D 生成树 - 矩阵树定理,高斯消元

    给出两幅 \(n(\leq 400)\) 个点的无向图 \(G_1 ,G_2\),对于 \(G_1\) 的每一颗生成树,它的权值定义为有多少条边在 \(G_2\) 中出现.求 \(G_1\) 所有生成 ...

随机推荐

  1. 【读书笔记】iOS-UDID

    UIDevice类可以返回当前iOS设备的UDID,以前开发者通常使用UDID作为识别每台设备的唯一标识,然后从iOS5开始,苹果公司将这一功能标记为废止并不推荐使用,苹果公司在iOS6之后将这个功能 ...

  2. 利用火车头采集A67手机电影教程一

    今天将讲述:利用火车头采集A67手机电影,并导入到网站中,如果你要更多更快的教程,请访问:http://www.it28.cn/category-191.html 现在以A67中的电影中的动作片为例: ...

  3. Fiddler 使用fiddler发送捕获的请求及模拟服务器返回

    使用fiddler发送捕获的请求及模拟服务器返回 by:授客 QQ:1033553122 1.做好相关监听及代理设置 略 2.发送捕获的请求 如图 3.模拟服务器返回 本例的一个目的是,根据服务器返回 ...

  4. python中关于类隐藏属性的三种处理方法

    关于隐藏属性 引子: 当类的属性或者类实例对象的属性隐藏的时候必须通过存取器方法来获取和设置这些隐藏的属性. 例如: def get_name(self,name):     #存取器方法 self. ...

  5. UML类图关系图解

    一.类结构 在类的UML图中,使用长方形描述一个类的主要构成,长方形垂直地分为三层,以此放置类的名称.属性和方法. 其中, 一般类的类名用正常字体粗体表示,如上图:抽象类名用斜体字粗体,如User:接 ...

  6. OneAPM大讲堂 | Java 异常日志记录最佳实践

    [编者按]本文作者是 Casey Dunham.Casey 是一位具有 10 多年经验的专业软件开发人员,以其独特的方式应对应用安全问题而闻名.本文系国内 ITOM 管理平台 OneAPM 工程师编译 ...

  7. [20170623]利用传输表空间恢复数据库2.txt

    [20170623]利用传输表空间恢复数据库2.txt --//继续上午的测试,测试truncate,是否可行,理论讲应该没有问题.我主要的目的测试是否要切换日志.--//参考链接 : http:// ...

  8. 阵列卡raid H730写策略write-through和write-back配置说明

    问题描述: 最近公司新进了测试服务器,但是在做阵列的时候忘记写策略里面的配置意思了 就网上查了一下,然后顺便做个笔记记录一下 write-through 数据在写入存储的同时,要写入缓存,这种方式安全 ...

  9. Hadoop2.7.6_03_HDFS原理

    1. HDFS前言 l  设计思想 分而治之:将大文件.大批量文件,分布式存放在大量服务器上,以便于采取分而治之的方式对海量数据进行运算分析: l  在大数据系统中作用: 为各类分布式运算框架(如:m ...

  10. Alpha冲刺! Day11 - 砍柴

    Alpha冲刺! Day11 - 砍柴 今日已完成 晨瑶: gitkraken团队协作流程教程基本完工. 昭锡:将主页包含UI界面.逻辑处理等与底部栏整合,学习Retrofit网络库. 永盛:更多 c ...