近年来,随着深度学习的崛起,计算机视觉得到飞速发展。目标检测作为计算机视觉的基础算法,也搭上了深度学习的快车。基于Proposal的检测框架,从R-CNN到Faster R-CNN,算法性能越来越高,速度越来越快。另一方面,直接回归Bounding Box的框架,从YOLO到SSD,在保持速度优势的同时,性能也逐渐得到提升。“深度学习大讲堂”往期介绍过这方面的进展,在此不再赘述。
    近期,我们在PASCAL VOC2012目标检测上提交的结果mAP性能达到87.9,刷新了世界记录,排名第一名。

 
方法上,基于Faster R-CNN [1],我们做了一系列的算法改进,使得性能相比Baseline得到显著提升。本文主要给大家分享我们做出的这些算法上的改进技巧,以及一些工程上的实践经验。

1.寻找更优的网络结构
    ”Features matter.” 去年MSRA凭借ResNets [2]取得了多项任务性能上的突破。以ResNet-101为基准,有没有网络可以提供更优的特征?我们验证了以下几个网络。    

a)       进一步增加网络深度。在12GB显存容量的限制下,101层的网络已经是极限。然而,如果把预训练模型的BN层参数融合进前一层卷积层,然后去掉BN层,则可以容纳ResNet-152。根据我们的实验,在ImageNet DET数据集上,去掉BN层的ResNet-152比保留BN层的ResNet-101还要差约1个点。这说明BN层的作用还是比较重要的。   
 b)       BN层的训练策略。我们发现训练时如果更新BN层的参数,相比固定参数,性能会下降一大截。原因可能是Faster R-CNN训练时batch size只有1,batch之间的均值/方差变化太大,太不稳定。    
c)       MSRA和Facebook相继公开了自己训练的ResNets模型。后续MSRA又提出了Identity Mapping版本的ResNets [3]。我们验证发现,Identity Mapping版本的ResNet-101检测性能略优于MSRA的原始ResNet-101模型和Facebook的模型。
2. 改进RPN Proposal
    在Faster R-CNN框架里面,RPN提取Proposal和FRCN对Proposal进行分类其实是2个独立的问题。针对RPN,我们做出了以下2处改进:   
 a)       均衡正负Anchor比例。理想状态下,RPN 正负Anchor的比例是1:1。我们发现,在batch size比较大(256)的情况下,这个比例会非常悬殊。特别是目标数量比较少的图像,正的Anchor数量会非常少。这样训练出来的模型会偏向于背景类别,容易漏检。我们对这个比例做了限制,让负样本数量不超过正样本的1.5倍,发现Proposal的召回率可以提高5个点。   
 b)       级联RPN。受CRAFT [4]的启发,我们设计了自己的级联RPN。[4]中先得到标准的RPN Proposal,然后用一个分类性能更强的FRCN分支来改进Proposal质量。我们则是用了2个标准的RPN(图 1)。第一个RPN用滑窗得到的Proposal作为Anchor,第二个RPN用第一个RPN输出的Proposal作为新的Anchor位置。相比[4],我们的算法优势是实现简单,额外增加的计算量非常少。对于中大目标,可以明显提升Proposal位置的准确度。
 
 
图 1 Cascade RPN网络结构。其中虚线框表示这一层可以省略。

3. 全局上下文建模
    每个Proposal对应原始图像中的一个ROI区域。对这个ROI区域进行分类时, FRCN先把ROI映射到中间特征图上,然后在中间特征图上做裁剪(RoIPooling)。裁剪出来的小特征图输入到CNN分类器中。可以看到,CNN分类只使用了ROI区域内的局部特征。实际上,ROI周围的上下文信息对于判断这个ROI类别是很有帮助的。例如对一个乒乓球分类,很容易和光源混淆。如果知道周围有乒乓球拍、乒乓球台等目标,则更容易判断这是个乒乓球。    全局上下文建模是从整幅图像提取特征,然后和每个Proposal的局部特征相融合,用于分类。去年MSRA
[2]使用全局上下文,得到了1个点的性能提升。然而他们没有发布具体的实现细节。我们实现的全局上下文网络结构如图 2所示。
 
 
图 2 全局上下文建模网络结构。 

    我们发现,对于图中的全局上下文网络分支,训练时如果采用随机初始化,性能提升非常有限。如果用预训练的参数初始化,在ImageNet DET验证集上可以得到超过3个点的性能提升。对于ResNets,RoIPooling后面的conv5有9层卷积。而Faster R-CNN finetune时一般初始学习速率又会设得比较小(0.001)。这就导致从头训练这9层卷积比较困难。因此,这里预训练显得尤为重要。另外,[2]还把全局上下文特征同时用于分类和Bounding
Box回归。我们发现全局上下文特征对于Bounding Box回归没有帮助,只对分类有帮助。

4. 训练技巧
    a)       平衡采样。很多数据集存在样本不均衡的问题,有些类别特别多,有些类别特别少。训练模型时,从一个图像列表中依次读取样本训练。这样的话,小类样本参与训练的机会就比大类少。训练出来的模型会偏向于大类,即大类性能好,小类性能差。平衡采样策略就是把样本按类别分组,每个类别生成一个样本列表。训练过程中先随机选择1个或几个类别,然后从各个类别所对应的样本列表中随机选择样本。这样可以保证每个类别参与训练的机会比较均衡。在PASCAL
VOC数据集上,使用平衡采样性能可以提升约0.7个点。    

b)       难例挖掘(OHEM [5])。使用了难例挖掘后,收敛更快,训练更稳定。在ImageNet DET数据集上,性能可以提升1个多点。   
 c)       多尺度训练。使用多尺度训练的话,可以让参与训练的目标大小分布更加均衡,使模型对目标大小具有一定的鲁棒性。
5.  预测技巧
    预测阶段,我们用了多尺度预测,水平翻转,和检测框投票。这些策略的具体实现在很多文献中都有描述。这里我们可以分享一下多个检测结果的融合策略。当使用多尺度预测,水平翻转,还有多模型Ensemble时,对于同一张测试图像,我们会得到好几组结果。对于这些结果,最直观的融合方式就是把所有的检测框放在一起,然后用非极大值抑制(NMS)处理一下。但是我们发现另一种方式效果更好,就是把RPN和FRCN分开来做。先对RPN做多尺度、水平翻转、多模型的融合,得到一组固定的Proposal之后,再对FRCN进行多尺度、水平翻转、多模型的融合。RPN的融合用NMS更好,FRCN的融合用对Proposal的置信度和Bounding
Box位置取平均值的方式更好。 总结

本文总结了我们做出的一些Faster R-CNN改进技巧,并分享了算法实现过程中遇到的细节问题。正如谚语所言,”The devil is in the details.” 希望我们的这些算法细节对同行以及相关的算法爱好者们提供一定的帮助和指引。我们抛砖引玉,期待同行们也可以分享自己的经验

FasterRCNN 提升分类精度(转)的更多相关文章

  1. ECCV 2018 | Bi-Real net:超XNOR-net 10%的ImageNet分类精度

    这项工作由香港科技大学,腾讯 AI lab,以及华中科技大学合作完成,目的是提升二值化卷积神经网络(1-bit CNN)的精度.虽然 1-bit CNN 压缩程度高,但是其当前在大数据集上的分类精度与 ...

  2. 10. 混淆矩阵、总体分类精度、Kappa系数

    一.前言 表征分类精度的指标有很多,其中最常用的就是利用混淆矩阵.总体分类精度以及Kappa系数. 其中混淆矩阵能够很清楚的看到每个地物正确分类的个数以及被错分的类别和个数.但是,混淆矩阵并不能一眼就 ...

  3. 手工设计神经MNIST使分类精度达到98%以上

    设计了两个隐藏层,激活函数是tanh,使用Adam优化算法,学习率随着epoch的增大而调低 import tensorflow as tf from tensorflow.examples.tuto ...

  4. 《Self-Attention Generative Adversarial Networks》里的注意力计算

    前天看了 criss-cross 里的注意力模型  仔细理解了  在: https://www.cnblogs.com/yjphhw/p/10750797.html 今天又看了一个注意力模型 < ...

  5. 全国30m精度二级分类土地利用数据

    ​数据下载链接:数据下载链接 引言 全国土地利用数据产品是以Landsat TM/ETM/OLI遥感影像为主要数据源,经过影像融合.几何校正.图像增强与拼接等处理后,通过人机交互目视解译的方法,将全国 ...

  6. 写给程序员的机器学习入门 (十) - 对象识别 Faster-RCNN - 识别人脸位置与是否戴口罩

    每次看到大数据人脸识别抓逃犯的新闻我都会感叹技术发展的太快了,国家治安水平也越来越好了

  7. 【Python与机器学习】:利用Keras进行多类分类

    多类分类问题本质上可以分解为多个二分类问题,而解决二分类问题的方法有很多.这里我们利用Keras机器学习框架中的ANN(artificial neural network)来解决多分类问题.这里我们采 ...

  8. 提升学习算法简述:AdaBoost, GBDT和XGBoost

    1. 历史及演进 提升学习算法,又常常被称为Boosting,其主要思想是集成多个弱分类器,然后线性组合成为强分类器.为什么弱分类算法可以通过线性组合形成强分类算法?其实这是有一定的理论基础的.198 ...

  9. 机器学习(七)—Adaboost 和 梯度提升树GBDT

    1.Adaboost算法原理,优缺点: 理论上任何学习器都可以用于Adaboost.但一般来说,使用最广泛的Adaboost弱学习器是决策树和神经网络.对于决策树,Adaboost分类用了CART分类 ...

随机推荐

  1. Java笔记(十二) 文件基础技术

    文件基础技术 一.文件概述 一)基本概念 1.文件的分类: 1)文本文件:文件中每个二进制字节都是某个可打印字符的一部分.如.java文件 2)二进制文件:文件中每个二进制字节不一定用来表示字符,也可 ...

  2. 潭州课堂25班:Ph201805201 爬虫高级 第十三 课 代理池爬虫检测部分 (课堂笔记)

    1,通过爬虫获取代理 ip ,要从多个网站获取,每个网站的前几页2,获取到代理后,开进程,一个继续解析,一个检测代理是否有用 ,引入队列数据共享3,Queue 中存放的是所有的代理,我们要分离出可用的 ...

  3. 直接存储器存取(Direct Memory Access,DMA)详细讲解

    一.理论理解部分. 1.直接存储器存取(DMA)用来提供在外设和存储器之间或者存储器和存储器之间的高速数据传输. 2.无须CPU干预,数据可以通过DMA快速移动,这就节省了CPU的资源来做其他操作. ...

  4. [PA2014]Żarówki

    [PA2014]Żarówki 题目大意: 有\(n(n\le5\times10^5)\)个房间和\(n\)盏灯,你需要在每个房间里放入一盏灯.每盏灯都有一定功率\(p_i\),每间房间都需要功率不小 ...

  5. 回文检测 [USACO Training Section 1.3]

    题目描述 据说如果你给无限只母牛和无限台巨型便携式电脑(有非常大的键盘),那么母牛们会制造出世上最棒的回文.你的工作就是去寻找这些牛制造的奇观(最棒的回文). 在寻找回文时不用理睬那些标点符号.空格( ...

  6. 编程菜鸟的日记-初学尝试编程-编写函数实现strcmp功能

    #include <iostream>using namespace std;int mystrcmp(const char *str1,const char *str2){ assert ...

  7. centos 7 之nginx

    环境信息 [root@node1 ~]# cat /etc/redhat-release CentOS Linux release (Core) [root@node1 ~]# uname -r -. ...

  8. Codeforces899C Dividing the numbers(数论)

    http://codeforces.com/problemset/problem/899/C tot为奇数时,绝对差为1:tot为偶数时,绝对差为0. 难点在于如何输出. #include<io ...

  9. flask之flask-script组件

    Flask Script扩展提供向Flask插入外部脚本的功能,包括运行一个开发用的服务器,一个定制的Python shell,设置数据库的脚本,cronjobs,及其他运行在web应用之外的命令行任 ...

  10. 大数据学习环境搭建(CentOS6.9+Hadoop2.7.3+Hive1.2.1+Hbase1.3.1+Spark2.1.1)

    node1 192.168.1.11 node2 192.168.1.12 node3 192.168.1.13 备注 NameNode Hadoop Y Y 高可用 DateNode Y Y Y R ...