我的代码-cleaning
# coding: utf-8
# In[18]:
import pandas as pd
import numpy as np
from sklearn import tree
from sklearn.svm import SVC
from sklearn.grid_search import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.preprocessing import binarize
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import Normalizer
from sklearn.metrics import f1_score
from sklearn.metrics import accuracy_score,recall_score,average_precision_score,auc
# In[32]:
data=pd.read_csv(r"D:\Users\sgg91044\Desktop\bad_wafer_data_pivot.csv")
# In[33]:
data.head()
# In[34]:
index=data.drop(columns=["defect_count","ETCM_PHA4","ETCM_PHB4","ETCM_PHC4","HELK_MAX.","HELK_MEAN","HELK_SD","LOWERCHM_PRESS","PBK4","RR13_MAX.","RR13_MEAN","RR23_MAX.","RR23_MEAN","THR3_MAX.","THR3_MAX._DIFF","THR3_MEAN","THR3_MEAN_DIFF","THR3_MEAN_SLOPE","THR3_SD"])
index=index.drop(columns="Target")
index
# In[35]:
data=data.drop(columns=["lotid","Step","Recipie_Name","defect_count"])
data.head()
# In[36]:
ohe = OneHotEncoder()
le = LabelEncoder()
# In[37]:
data.head()
# In[40]:
data["eqp_encoded"] = le.fit_transform(data.iloc[:,0])
data["slot_encoded"] = le.fit_transform(data.iloc[:,1])
data['chamber_encoded'] = le.fit_transform(data.iloc[:,2])
data.head()
# In[41]:
data=data.drop(columns=["eqpid","slotid","Chamber"])
data.head()
# In[42]:
nz = Normalizer()
data.iloc[:,10:12]=pd.DataFrame(nz.fit_transform(data.iloc[:,10:12]),columns=data.iloc[:,10:12].columns)
data.iloc[:,0:3]=pd.DataFrame(nz.fit_transform(data.iloc[:,0:3]),columns=data.iloc[:,0:3].columns)
data.head()
# In[43]:
def cleaning():
data=pd.read_csv(r"D:\Users\sgg91044\Desktop\bad_wafer_data_pivot.csv")
data=data.drop(columns=["lotid","Step","Recipie_Name","defect_count"])
le = LabelEncoder()
data["eqp_encoded"] = le.fit_transform(data.iloc[:,0])
data["slot_encoded"] = le.fit_transform(data.iloc[:,1])
data['chamber_encoded'] = le.fit_transform(data.iloc[:,2])
data=data.drop(columns=["eqpid","slotid","Chamber"])
nz = Normalizer()
data.iloc[:,10:12]=pd.DataFrame(nz.fit_transform(data.iloc[:,10:12]),columns=data.iloc[:,10:12].columns)
data.iloc[:,0:3]=pd.DataFrame(nz.fit_transform(data.iloc[:,0:3]),columns=data.iloc[:,0:3].columns)
我的代码-cleaning的更多相关文章
- AGC010 - C: Cleaning
原题链接 题意简述 给出一棵个节点的树,每个点有点权.每次可以选择两个叶节点并将连接它们的路径上的节点的点权-1(包括叶节点).求能否将所有节点的点权都变为0. 分析 先考虑最简单的情况.在这种情况下 ...
- 【bzoj1672】[USACO2005 Dec]Cleaning Shifts 清理牛棚
题目描述 Farmer John's cows, pampered since birth, have reached new heights of fastidiousness. They now ...
- Coursera-Getting and Cleaning Data-week1-课程笔记
博客总目录,记录学习R与数据分析的一切:http://www.cnblogs.com/weibaar/p/4507801.html -- Sunday, January 11, 2015 课程概述 G ...
- Coursera-Getting and Cleaning Data-Week2-课程笔记
Coursera-Getting and Cleaning Data-Week2 Saturday, January 17, 2015 课程概述 week2主要是介绍从各个来源读取数据.包括MySql ...
- Coursera-Getting and Cleaning Data-Week3-dplyr+tidyr+lubridate的组合拳
Coursera-Getting and Cleaning Data-Week3 Wednesday, February 04, 2015 好久不写笔记了,年底略忙.. Getting and Cle ...
- Coursera-Getting and Cleaning Data-week4-R语言中的正则表达式以及文本处理
博客总目录:http://www.cnblogs.com/weibaar/p/4507801.html Thursday, January 29, 2015 补上第四周笔记,以及本次课程总结. 第四周 ...
- poj 2376 Cleaning Shifts
http://poj.org/problem?id=2376 Cleaning Shifts Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
- JAVA版Kafka代码及配置解释
伟大的程序员版权所有,转载请注明:http://www.lenggirl.com/bigdata/java-kafka.html.html 一.JAVA代码 kafka是吞吐量巨大的一个消息系统,它是 ...
- POJ 2376 Cleaning Shifts(轮班打扫)
POJ 2376 Cleaning Shifts(轮班打扫) Time Limit: 1000MS Memory Limit: 65536K [Description] [题目描述] Farmer ...
随机推荐
- UTF-8格式txt文件读取字节前三位问题
今天试着读取一份UTF-8格式的txt文件,内容如下 12345 但是每次读取之后转为String类型,输出字符串长度总是为6,并且第一位打印在控制台后不占任何空间. 经过debug查看字节码后发现, ...
- freeswitch设置支持视频语音编码
1.修改FreeSWITCH安装路径下/conf/var.xml文件中,增加: <X-PRE-PROCESS cmd=="set" data="proxy_medi ...
- 使用MyBatis Generator 1.3.7自动生成代码
MyBatis Generator是一款mybatis自动代码生成工具,可以通过配置后自动生成文件. MyBatis Generator有几种方法可以生成代码,下面是其中一种. 一.官网下载 MyB ...
- Docker——入门实战
I. Docker简介Docker是一种新兴的虚拟化技术,能够一定程度上的代替传统虚拟机.不过,Docker 跟传统的虚拟化方式相比具有众多的优势.我也将Docker类比于Python虚拟环境,可以有 ...
- 第三方API使用的好习惯
1自己封装API接口 有些不很稳定的API接口,最好还是自己封装隔离后再使用,否则哪天它一改接口,那我得到处替换了 比如融云的群组,聊天室
- Practical Node.js (2018版) 14章, async code in Node
Asynchronous Code in Node 历史上,Node开发者只能用回调和事件emitters. 现在可以使用一些异步的语法: async module Promises Async/aw ...
- bzoj 5068: 友好的生物
大意: n个生物, 每个生物有k种属性, 友好度通过下式计算. , C为给定非负数组, 求友好度最大值. k比较小, 求的是最大值并且$C_i$非负, 所以可以暴力枚举正负情况去绝对值号. #incl ...
- phpldapadmin操作指导
1.在浏览器中打开http://IP/phpldapadmin 2. 点击[Login]按钮,输入管理员密码. 3.点击[创建新条目]. 4. 点击[Generic: Postfix Group]. ...
- 2015-10-13 jQuery5实例
jQuery(5) 一.扑克牌切换 <body> <div class="ig ig1"><img src="image/1.jpg&q ...
- css 常用布局
「前端那些事儿」③ CSS 布局方案 我们在日常开发中经常遇到布局问题,下面罗列几种常用的css布局方案 话不多说,上代码! 居中布局 以下居中布局均以不定宽为前提,定宽情况包含其中 1.水平居中 a ...