# coding: utf-8

# In[18]:

import pandas as pd
import numpy as np
from sklearn import tree
from sklearn.svm import SVC
from sklearn.grid_search import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.preprocessing import binarize
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import Normalizer
from sklearn.metrics import f1_score
from sklearn.metrics import accuracy_score,recall_score,average_precision_score,auc

# In[32]:

data=pd.read_csv(r"D:\Users\sgg91044\Desktop\bad_wafer_data_pivot.csv")

# In[33]:

data.head()

# In[34]:

index=data.drop(columns=["defect_count","ETCM_PHA4","ETCM_PHB4","ETCM_PHC4","HELK_MAX.","HELK_MEAN","HELK_SD","LOWERCHM_PRESS","PBK4","RR13_MAX.","RR13_MEAN","RR23_MAX.","RR23_MEAN","THR3_MAX.","THR3_MAX._DIFF","THR3_MEAN","THR3_MEAN_DIFF","THR3_MEAN_SLOPE","THR3_SD"])
index=index.drop(columns="Target")
index

# In[35]:

data=data.drop(columns=["lotid","Step","Recipie_Name","defect_count"])
data.head()

# In[36]:

ohe = OneHotEncoder()
le = LabelEncoder()

# In[37]:

data.head()

# In[40]:

data["eqp_encoded"] = le.fit_transform(data.iloc[:,0])
data["slot_encoded"] = le.fit_transform(data.iloc[:,1])
data['chamber_encoded'] = le.fit_transform(data.iloc[:,2])
data.head()

# In[41]:

data=data.drop(columns=["eqpid","slotid","Chamber"])
data.head()

# In[42]:

nz = Normalizer()
data.iloc[:,10:12]=pd.DataFrame(nz.fit_transform(data.iloc[:,10:12]),columns=data.iloc[:,10:12].columns)
data.iloc[:,0:3]=pd.DataFrame(nz.fit_transform(data.iloc[:,0:3]),columns=data.iloc[:,0:3].columns)
data.head()

# In[43]:

def cleaning():
data=pd.read_csv(r"D:\Users\sgg91044\Desktop\bad_wafer_data_pivot.csv")
data=data.drop(columns=["lotid","Step","Recipie_Name","defect_count"])
le = LabelEncoder()
data["eqp_encoded"] = le.fit_transform(data.iloc[:,0])
data["slot_encoded"] = le.fit_transform(data.iloc[:,1])
data['chamber_encoded'] = le.fit_transform(data.iloc[:,2])
data=data.drop(columns=["eqpid","slotid","Chamber"])
nz = Normalizer()
data.iloc[:,10:12]=pd.DataFrame(nz.fit_transform(data.iloc[:,10:12]),columns=data.iloc[:,10:12].columns)
data.iloc[:,0:3]=pd.DataFrame(nz.fit_transform(data.iloc[:,0:3]),columns=data.iloc[:,0:3].columns)

我的代码-cleaning的更多相关文章

  1. AGC010 - C: Cleaning

    原题链接 题意简述 给出一棵个节点的树,每个点有点权.每次可以选择两个叶节点并将连接它们的路径上的节点的点权-1(包括叶节点).求能否将所有节点的点权都变为0. 分析 先考虑最简单的情况.在这种情况下 ...

  2. 【bzoj1672】[USACO2005 Dec]Cleaning Shifts 清理牛棚

    题目描述 Farmer John's cows, pampered since birth, have reached new heights of fastidiousness. They now ...

  3. Coursera-Getting and Cleaning Data-week1-课程笔记

    博客总目录,记录学习R与数据分析的一切:http://www.cnblogs.com/weibaar/p/4507801.html -- Sunday, January 11, 2015 课程概述 G ...

  4. Coursera-Getting and Cleaning Data-Week2-课程笔记

    Coursera-Getting and Cleaning Data-Week2 Saturday, January 17, 2015 课程概述 week2主要是介绍从各个来源读取数据.包括MySql ...

  5. Coursera-Getting and Cleaning Data-Week3-dplyr+tidyr+lubridate的组合拳

    Coursera-Getting and Cleaning Data-Week3 Wednesday, February 04, 2015 好久不写笔记了,年底略忙.. Getting and Cle ...

  6. Coursera-Getting and Cleaning Data-week4-R语言中的正则表达式以及文本处理

    博客总目录:http://www.cnblogs.com/weibaar/p/4507801.html Thursday, January 29, 2015 补上第四周笔记,以及本次课程总结. 第四周 ...

  7. poj 2376 Cleaning Shifts

    http://poj.org/problem?id=2376 Cleaning Shifts Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  8. JAVA版Kafka代码及配置解释

    伟大的程序员版权所有,转载请注明:http://www.lenggirl.com/bigdata/java-kafka.html.html 一.JAVA代码 kafka是吞吐量巨大的一个消息系统,它是 ...

  9. POJ 2376 Cleaning Shifts(轮班打扫)

    POJ 2376 Cleaning Shifts(轮班打扫) Time Limit: 1000MS   Memory Limit: 65536K [Description] [题目描述] Farmer ...

随机推荐

  1. 清除wnTKYg 这个挖矿工木马的过程讲述

    由于工作需要,我由一个专业java开发工程师,渐渐的也成为了不专业的资深的运维工程师了.感慨一番,书归正传,下面就讲解wnTKYg如何清除.最近项目在做性能测试,发现CPU使用率异常,无人访问时CPU ...

  2. pip使用豆瓣的镜像源

    豆瓣镜像地址:https://pypi.douban.com/simple/ 虽然用easy_install和pip来安装第三方库很方便 它们的原理其实就是从Python的官方源pypi.python ...

  3. 编码原则 之 Separation of Concerns

    相关链接: Separation of Concerns 原文 The Art of Separation of Concerns Introduction In software engineeri ...

  4. vue的环境配置

    在vue越来越火的情况下,本人也开始加入到大军当中. 首先,列举下我们需要的东西: node.js 环境(npm包管理器) vue-cli 脚手架构建工具 cnpm npm的淘宝镜像 安装node.j ...

  5. el-checkbox遇到的问题

    在官网中有实例 <template> <el-checkbox :indeterminate="isIndeterminate" v-model="ch ...

  6. 近期Freecodecamp问题总结

    最近没什么事,刷了freecodecamp的算法题,发现了自己基础的薄弱 1 where are thou 写一个 function,它遍历一个对象数组(第一个参数)并返回一个包含相匹配的属性-值对( ...

  7. xml.libxml2_添加带tagname的xml文本(xmlNewTextChild)

    1. 2.例子代码: int TgText::NodeNew_G2SVG(xmlNode* _pNodeCurrent_G, xmlNode* _pNodeParent_SVG, xmlNode** ...

  8. openssl 交叉编译

    建立build文件夹 mkdir build 在build文件夹中建立run.sh文件 cd build touch run.sh chmod 755 run.sh run.sh文件内容如下: #!/ ...

  9. 20175317 《Java程序设计》第四周学习总结

    20175317 <Java程序设计>第四周学习总结 教材学习内容总结 第四周我学习了教材第五章的内容,了解了子类与继承的知识,学到了以下内容: 明白了什么是子类与父类.类的树形结构. 子 ...

  10. mongodump and mongorestore

    mongoexport和mongoimport只能导出/导入某个特定集合 1 mongoexport bin目录下 ./mongoexport <hostname><:port> ...