# coding: utf-8

# In[18]:

import pandas as pd
import numpy as np
from sklearn import tree
from sklearn.svm import SVC
from sklearn.grid_search import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.preprocessing import binarize
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import Normalizer
from sklearn.metrics import f1_score
from sklearn.metrics import accuracy_score,recall_score,average_precision_score,auc

# In[32]:

data=pd.read_csv(r"D:\Users\sgg91044\Desktop\bad_wafer_data_pivot.csv")

# In[33]:

data.head()

# In[34]:

index=data.drop(columns=["defect_count","ETCM_PHA4","ETCM_PHB4","ETCM_PHC4","HELK_MAX.","HELK_MEAN","HELK_SD","LOWERCHM_PRESS","PBK4","RR13_MAX.","RR13_MEAN","RR23_MAX.","RR23_MEAN","THR3_MAX.","THR3_MAX._DIFF","THR3_MEAN","THR3_MEAN_DIFF","THR3_MEAN_SLOPE","THR3_SD"])
index=index.drop(columns="Target")
index

# In[35]:

data=data.drop(columns=["lotid","Step","Recipie_Name","defect_count"])
data.head()

# In[36]:

ohe = OneHotEncoder()
le = LabelEncoder()

# In[37]:

data.head()

# In[40]:

data["eqp_encoded"] = le.fit_transform(data.iloc[:,0])
data["slot_encoded"] = le.fit_transform(data.iloc[:,1])
data['chamber_encoded'] = le.fit_transform(data.iloc[:,2])
data.head()

# In[41]:

data=data.drop(columns=["eqpid","slotid","Chamber"])
data.head()

# In[42]:

nz = Normalizer()
data.iloc[:,10:12]=pd.DataFrame(nz.fit_transform(data.iloc[:,10:12]),columns=data.iloc[:,10:12].columns)
data.iloc[:,0:3]=pd.DataFrame(nz.fit_transform(data.iloc[:,0:3]),columns=data.iloc[:,0:3].columns)
data.head()

# In[43]:

def cleaning():
data=pd.read_csv(r"D:\Users\sgg91044\Desktop\bad_wafer_data_pivot.csv")
data=data.drop(columns=["lotid","Step","Recipie_Name","defect_count"])
le = LabelEncoder()
data["eqp_encoded"] = le.fit_transform(data.iloc[:,0])
data["slot_encoded"] = le.fit_transform(data.iloc[:,1])
data['chamber_encoded'] = le.fit_transform(data.iloc[:,2])
data=data.drop(columns=["eqpid","slotid","Chamber"])
nz = Normalizer()
data.iloc[:,10:12]=pd.DataFrame(nz.fit_transform(data.iloc[:,10:12]),columns=data.iloc[:,10:12].columns)
data.iloc[:,0:3]=pd.DataFrame(nz.fit_transform(data.iloc[:,0:3]),columns=data.iloc[:,0:3].columns)

我的代码-cleaning的更多相关文章

  1. AGC010 - C: Cleaning

    原题链接 题意简述 给出一棵个节点的树,每个点有点权.每次可以选择两个叶节点并将连接它们的路径上的节点的点权-1(包括叶节点).求能否将所有节点的点权都变为0. 分析 先考虑最简单的情况.在这种情况下 ...

  2. 【bzoj1672】[USACO2005 Dec]Cleaning Shifts 清理牛棚

    题目描述 Farmer John's cows, pampered since birth, have reached new heights of fastidiousness. They now ...

  3. Coursera-Getting and Cleaning Data-week1-课程笔记

    博客总目录,记录学习R与数据分析的一切:http://www.cnblogs.com/weibaar/p/4507801.html -- Sunday, January 11, 2015 课程概述 G ...

  4. Coursera-Getting and Cleaning Data-Week2-课程笔记

    Coursera-Getting and Cleaning Data-Week2 Saturday, January 17, 2015 课程概述 week2主要是介绍从各个来源读取数据.包括MySql ...

  5. Coursera-Getting and Cleaning Data-Week3-dplyr+tidyr+lubridate的组合拳

    Coursera-Getting and Cleaning Data-Week3 Wednesday, February 04, 2015 好久不写笔记了,年底略忙.. Getting and Cle ...

  6. Coursera-Getting and Cleaning Data-week4-R语言中的正则表达式以及文本处理

    博客总目录:http://www.cnblogs.com/weibaar/p/4507801.html Thursday, January 29, 2015 补上第四周笔记,以及本次课程总结. 第四周 ...

  7. poj 2376 Cleaning Shifts

    http://poj.org/problem?id=2376 Cleaning Shifts Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  8. JAVA版Kafka代码及配置解释

    伟大的程序员版权所有,转载请注明:http://www.lenggirl.com/bigdata/java-kafka.html.html 一.JAVA代码 kafka是吞吐量巨大的一个消息系统,它是 ...

  9. POJ 2376 Cleaning Shifts(轮班打扫)

    POJ 2376 Cleaning Shifts(轮班打扫) Time Limit: 1000MS   Memory Limit: 65536K [Description] [题目描述] Farmer ...

随机推荐

  1. UTF-8格式txt文件读取字节前三位问题

    今天试着读取一份UTF-8格式的txt文件,内容如下 12345 但是每次读取之后转为String类型,输出字符串长度总是为6,并且第一位打印在控制台后不占任何空间. 经过debug查看字节码后发现, ...

  2. freeswitch设置支持视频语音编码

    1.修改FreeSWITCH安装路径下/conf/var.xml文件中,增加: <X-PRE-PROCESS cmd=="set" data="proxy_medi ...

  3. 使用MyBatis Generator 1.3.7自动生成代码

    MyBatis Generator是一款mybatis自动代码生成工具,可以通过配置后自动生成文件. MyBatis Generator有几种方法可以生成代码,下面是其中一种.  一.官网下载 MyB ...

  4. Docker——入门实战

    I. Docker简介Docker是一种新兴的虚拟化技术,能够一定程度上的代替传统虚拟机.不过,Docker 跟传统的虚拟化方式相比具有众多的优势.我也将Docker类比于Python虚拟环境,可以有 ...

  5. 第三方API使用的好习惯

    1自己封装API接口 有些不很稳定的API接口,最好还是自己封装隔离后再使用,否则哪天它一改接口,那我得到处替换了 比如融云的群组,聊天室

  6. Practical Node.js (2018版) 14章, async code in Node

    Asynchronous Code in Node 历史上,Node开发者只能用回调和事件emitters. 现在可以使用一些异步的语法: async module Promises Async/aw ...

  7. bzoj 5068: 友好的生物

    大意: n个生物, 每个生物有k种属性, 友好度通过下式计算. , C为给定非负数组, 求友好度最大值. k比较小, 求的是最大值并且$C_i$非负, 所以可以暴力枚举正负情况去绝对值号. #incl ...

  8. phpldapadmin操作指导

    1.在浏览器中打开http://IP/phpldapadmin 2. 点击[Login]按钮,输入管理员密码. 3.点击[创建新条目]. 4. 点击[Generic: Postfix Group]. ...

  9. 2015-10-13 jQuery5实例

    jQuery(5)   一.扑克牌切换 <body> <div class="ig ig1"><img src="image/1.jpg&q ...

  10. css 常用布局

    「前端那些事儿」③ CSS 布局方案 我们在日常开发中经常遇到布局问题,下面罗列几种常用的css布局方案 话不多说,上代码! 居中布局 以下居中布局均以不定宽为前提,定宽情况包含其中 1.水平居中 a ...