George and Round

CodeForces - 387B

George decided to prepare a Codesecrof round, so he has prepared m problems for the round. Let's number the problems with integers 1 through m. George estimates the i-th problem's complexity by integer bi.

To make the round good, he needs to put at least n problems there. Besides, he needs to have at least one problem with complexity exactly a1, at least one with complexity exactly a2, ..., and at least one with complexity exactly an. Of course, the round can also have problems with other complexities.

George has a poor imagination. It's easier for him to make some already prepared problem simpler than to come up with a new one and prepare it. George is magnificent at simplifying problems. He can simplify any already prepared problem with complexity c to any positive integer complexity d (c ≥ d), by changing limits on the input data.

However, nothing is so simple. George understood that even if he simplifies some problems, he can run out of problems for a good round. That's why he decided to find out the minimum number of problems he needs to come up with in addition to the mhe's prepared in order to make a good round. Note that George can come up with a new problem of any complexity.

Input

The first line contains two integers n and m (1 ≤ n, m ≤ 3000) — the minimal number of problems in a good round and the number of problems George's prepared. The second line contains space-separated integers a1, a2, ..., an (1 ≤ a1 < a2 < ... < an ≤ 106) — the requirements for the complexity of the problems in a good round. The third line contains space-separated integers b1, b2, ..., bm (1 ≤ b1 ≤ b2... ≤ bm ≤ 106) — the complexities of the problems prepared by George.

Output

Print a single integer — the answer to the problem.

Examples

Input
3 5
1 2 3
1 2 2 3 3
Output
0
Input
3 5
1 2 3
1 1 1 1 1
Output
2
Input
3 1
2 3 4
1
Output
3

Note

In the first sample the set of the prepared problems meets the requirements for a good round.

In the second sample, it is enough to come up with and prepare two problems with complexities 2 and 3 to get a good round.

In the third sample it is very easy to get a good round if come up with and prepare extra problems with complexities: 2, 3, 4.

sol:注意到n很小,n2都可以过,于是直接暴力模拟。

我猜应该有O(n*logn)的做法,比方说开一个multiset,先排遍序,每次取大于等于当前这个数的第一个,然后弹掉(这只是嘴巴,我没写过)

#include <bits/stdc++.h>
using namespace std;
typedef int ll;
inline ll read()
{
ll s=;
bool f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-'); ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^); ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<)
{
putchar('-'); x=-x;
}
if(x<)
{
putchar(x+''); return;
}
write(x/);
putchar((x%)+'');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const int N=;
int n,m,a[N],b[N];
bool Bo[N];
int main()
{
int i,j,ans;
R(n); R(m);
ans=n;
for(i=;i<=n;i++) R(a[i]);
for(i=;i<=m;i++) R(b[i]);
sort(b+,b+m+);
for(i=;i<=n;i++)
{
for(j=;j<=m;j++) if(b[j]>=a[i]&&(!Bo[j]))
{
Bo[j]=; ans--; break;
}
}
Wl(ans);
return ;
}

codeforces387B的更多相关文章

  1. 题解 【Codeforces387B】George and Round

    以下选自官方题解: 考虑困难的需求数量,我们将覆盖这些困难, 然后我们将提出新的问题,并准备新的问题来覆盖其他需求. 很明显,如果我们决定满足从n中抽取i的要求,那么最好采用那些复杂性最小的要求. 让 ...

随机推荐

  1. Vue2 第二天学习

    个人小总结:1年多没有写博客,感觉很多知识点生疏了,虽然工作上能解决问题,但是当别人问到某个知识点的时候,还是迷迷糊糊的,所以坚持写博客是硬道理的,因为大脑不可能把所有的知识点记住,有可能某一天忘了, ...

  2. Android Studio 导入工程

    最简单的方式 等待加载完就好了 第二种方式 在导入别人的android studio项目(假设为项目A)时,会遇到gradle不一致的情况,以下简短介绍解决方法: 1. 打开要导入的项目的目录,删除下 ...

  3. Unity 消息管理(观察煮模式)

    一.首先定义一份消息号(消息号用来标记发出的每一条消息,接收者通过注册要监听的消息号来监听相应的消息) public enum MSG_IDS { NONE = -, MSG_TEST01 = , M ...

  4. UOJ400/LOJ2553 CTSC2018 暴力写挂 边分治、虚树

    传送门--UOJ 传送门--LOJ 跟隔壁通道是一个类型的 要求的式子中有两个LCA,不是很方便,因为事实上在这种题目中LCA一般都是枚举的对象-- 第二棵树上的LCA显然是动不了的,因为没有其他的量 ...

  5. 计算2个时间之间经过多少Ticks

    Ticks是一个周期,存储的是一百纳秒,换算为秒,一千万分之一秒.我们需要计算2个时间之间,经过多少Ticks,可以使用下面的方法来实现,使用2个时间相减. 得到结果为正数,是使用较晚的时间减去较早的 ...

  6. 扩展 WPF 动画类

    原文:扩展 WPF 动画类 扩展 WPF 动画类                                                                     Charles ...

  7. 老生常谈,函数柯里化(curring)

    柯里化这个概念确实晦涩难懂,没有深入思考过的人其实真的很难明白这是一个什么东西.看起来简单.简单到或许只需要一行代码: const curry = fn => (…args) => fn. ...

  8. “论 ofo 是如何影响今日头条发展的”

    近段时间, ofo 小黄车押金难退的消息频频曝出.尽管 OFO 已经宣布押金只能在线上退还,但是线上退押金也难,因此很多的用户还是选择到 ofo 北京总部“要个说法”.记者昨天在现场发现,位于北京中关 ...

  9. Apache之Rewrite和RewriteRule规则梳理以及http强转https的配置总结

    一. 简单实例介绍一般来说,apache配置好http和https后,如果想要做http强转到https,需要设置url重定向规则,大致需要下面几个步骤即可完成配置: 1)在httpd.conf文件里 ...

  10. python-深浅copy-18

    # 赋值运算l1 = [1,2,3]l2 = l1l1.append('a')print(l1,l2) # [1, 2, 3, 'a'] [1, 2, 3, 'a'] #copyl1 = [1,2,3 ...