BZOJ2159 Crash的文明世界(树形dp+斯特林数)
根据组合意义,有nk=ΣC(n,i)*i!*S(k,i) (i=0~k),即将k个有标号球放进n个有标号盒子的方案数=在n个盒子中选i个将k个有标号球放入并且每个盒子至少有一个球。
回到本题,可以令f[i][j]表示ΣC(dis(i,k),j) (k为i子树中节点),通过C(i,j)=C(i-1,j)+C(i-1,j-1)转移。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 50010
#define K 155
#define P 10007
int n,m,l,now,A,B,Q,tmp,p[N],t=;
int f[N][K],S[K][K],fac[K],ans[N];
struct data{int to,nxt;
}edge[N<<];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void dfs(int k,int from)
{
f[k][]=;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from)
{
dfs(edge[i].to,k);
f[k][]=(f[k][]+f[edge[i].to][])%P;
for (int j=;j<=m;j++)
f[k][j]=(f[k][j]+f[edge[i].to][j]+f[edge[i].to][j-])%P;
}
}
void getans(int k,int from)
{
for (int j=;j<=m;j++)
ans[k]=(ans[k]+f[k][j]*fac[j]%P*S[m][j])%P;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from)
{
for (int j=m;j>=;j--)
f[edge[i].to][j]=((f[k][j]-f[edge[i].to][j-]+f[k][j-]-f[edge[i].to][j-]-f[edge[i].to][j-])%P+P)%P;
f[edge[i].to][]=((f[k][]-f[edge[i].to][]+f[k][]-f[edge[i].to][])%P+P)%P;
f[edge[i].to][]=n;
getans(edge[i].to,k);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2159.in","r",stdin);
freopen("bzoj2159.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read(),l=read(),now=read(),A=read(),B=read(),Q=read();
for (int i=;i<n;i++)
{
now=(now*A+B)%Q;
tmp=(i<l)?i:l;
int x=i-now%tmp,y=i+;
addedge(x,y),addedge(y,x);
}
dfs(,);
fac[]=;for (int i=;i<=m;i++) fac[i]=fac[i-]*i%P;
S[][]=;
for (int i=;i<=m;i++)
for (int j=;j<=i;j++)
S[i][j]=(S[i-][j-]+S[i-][j]*j)%P;
getans(,);
for (int i=;i<=n;i++) printf("%d\n",ans[i]);
return ;
}
BZOJ2159 Crash的文明世界(树形dp+斯特林数)的更多相关文章
- [国家集训队] Crash 的文明世界(第二类斯特林数)
题目 [国家集训队] Crash 的文明世界 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 \[\begin{aligned} ans_x&=\sum\limi ...
- BZOJ2159 Crash的文明世界——树上DP&&第二类Stirling数
题意 给定一个有 $n$ 个结点的树,设 $S(i)$ 为第 $i$ 个结点的“指标值”,定义为 $S(i)=\sum_{i=1}^{n}dist(i,j)^k$,$dist(i, j)$ 为结点 $ ...
- BZOJ 2159: Crash 的文明世界 第二类斯特林数+树形dp
这个题非常巧妙啊~ #include <bits/stdc++.h> #define M 170 #define N 50003 #define mod 10007 #define LL ...
- [BZOJ2159]Crash的文明世界(斯特林数+树形DP)
题意:给定一棵树,求$S(i)=\sum_{j=1}^{n}dist(i,j)^k$.题解:根据斯特林数反演得到:$n^m=\sum_{i=0}^{n}C(n,i)\times i!\times S( ...
- BZOJ2159 : Crash 的文明世界
$x^k=\sum_{i=1}^k Stirling2(k,i)\times i!\times C(x,i)$ 设$f[i][j]=\sum_{k=1}^n C(dist(i,k),j)$. 则可以利 ...
- 题解 [BZOJ2159] Crash的文明世界
题面 解析 这题一眼换根DP啊 首先,我们考虑一下如何转换\(n^m\)这个式子, 先把式子摆出来吧:\(n^m=\sum_{j=0}^mS(m,j)C_n^jj!\) 其中\(S(m,j)\)表示第 ...
- BZOJ2159 Crash 的文明世界 【第二类斯特林数 + 树形dp】
题目链接 BZOJ2159 题解 显然不能直接做点分之类的,观察式子中存在式子\(n^k\) 可以考虑到 \[n^k = \sum\limits_{i = 0} \begin{Bmatrix} k \ ...
- BZOJ2159 Crash的文明世界
Description 传送门 给你一个n个点的树,边权为1. 对于每个点u, 求:\(\sum_{i = 1}^{n} distance(u, i)^{k}\) $ n \leq 50000, k ...
- 【BZOJ2159】Crash的文明世界(第二类斯特林数,动态规划)
[BZOJ2159]Crash的文明世界(第二类斯特林数,动态规划) 题面 BZOJ 洛谷 题解 看到\(k\)次方的式子就可以往二项式的展开上面考,但是显然这样子的复杂度会有一个\(O(k^2)\) ...
随机推荐
- linux内存源码分析 - 伙伴系统(初始化和申请页框)
本文为原创,转载请注明:http://www.cnblogs.com/tolimit/ 之前的文章已经介绍了伙伴系统,这篇我们主要看看源码中是如何初始化伙伴系统.从伙伴系统中分配页框,返回页框于伙伴系 ...
- Spring Boot Admin 日志查看功能
按照官方配置POM和配置文件后,能够结合Eureka查看各微服务状态,但是日志始终查看不了,出现406等错误. 最后偶然发现,是在在从官方网站拷贝配置的时候,出现的问题. logging.file=* ...
- 开源的mqtt服务器
看介绍挺强大,开源,可运行在Linux和Windows,文档中有相关测试工具,及客户端介绍. 希望有机会应用.http://www.emqtt.com/
- sessionStorage和localStorage的区别
JS的本地保存localStorage.sessionStorage用法总结 localStorage.sessionStorage是Html5的特性,IE7以下浏览器不支持 为什么要掌握localS ...
- CSS 外边距
CSS 外边距围绕在元素边框的空白区域是外边距.设置外边距会在元素外创建额外的“空白”. 设置外边距的最简单的方法就是使用 margin 属性,这个属性接受任何长度单位.百分数值甚至负值. ##### ...
- ruby安装及升级
在centos6.x下执行上面的"gem install redis"操作可能会报错,坑很多!默认yum安装的ruby版本是1.8.7,版本太低,需要升级到ruby2.2以上,否则 ...
- cometd简单用例
准备工作 整个例子的源码下载:http://pan.baidu.com/s/1gfFYSbp 下载服务端jar文件 Comet4J目前仅支持Tomcat6.7版本,根据您所使用的Tomcat版本下载[ ...
- SpringCloud设定Feign底层实现
1. 概述 版本: spring-boot: 1.5.9.RELEASE spring-cloud: Dalston.SR5 在默认情况下 spring cloud feign在进行各个子服务之间的 ...
- taro之React Native 端开发研究
初步结论:如果想把 React Native 集成到现有的原生项目中,不能使用taro的React Native 端开发功能(目前来说不能实现,以后再观察). RN开发有2种模式: 1.一是原生A ...
- hashContext
java.lnag.Object中对hashCode的约定: 1. 在一个应用程序执行期间,如果一个对象的equals方法做比较所用到的信息没有被修改的话,则对该对象调用hashCode方法多次,它必 ...