Question:

>>> timeit.timeit("'x' in ('x',)")
0.04869917374131205
>>> timeit.timeit("'x' == 'x'")
0.06144205736110564

Also works for multiple options, both seem to grow linearly:

>>> timeit.timeit("'x' in ('x', 'y')")
0.04866674801541748
>>> timeit.timeit("'x' == 'x' or 'x' == 'y'")
0.06565782838087131
>>> timeit.timeit("'x' in ('y', 'x')")
0.08975995576448526
>>> timeit.timeit("'x' == 'y' or 'x' == 'y'")
0.12992391047427532

Based on this, I think I should start using in everywhere
instead of == !!

Answer:

As I mentioned to David Wolever, there's more to this than meets the eye; both methods dispatch to is;
you can prove this by doing

min(Timer("x == x", setup="x = 'a' * 1000000").repeat(10, 10000))
#>>> 0.00045456900261342525 min(Timer("x == y", setup="x = 'a' * 1000000; y = 'a' * 1000000").repeat(10, 10000))
#>>> 0.5256857610074803

The first can only be so fast because it checks by identity.

To find out why one would take longer than the other, let's trace through execution.

They both start in ceval.c,
from COMPARE_OP since
that is the bytecode involved

TARGET(COMPARE_OP) {
PyObject *right = POP();
PyObject *left = TOP();
PyObject *res = cmp_outcome(oparg, left, right);
Py_DECREF(left);
Py_DECREF(right);
SET_TOP(res);
if (res == NULL)
goto error;
PREDICT(POP_JUMP_IF_FALSE);
PREDICT(POP_JUMP_IF_TRUE);
DISPATCH();
}

This pops the values from the stack (technically it only pops one)

PyObject *right = POP();
PyObject *left = TOP();

and runs the compare:

PyObject *res = cmp_outcome(oparg, left, right);

cmp_outcome is
this:

static PyObject *
cmp_outcome(int op, PyObject *v, PyObject *w)
{
int res = 0;
switch (op) {
case PyCmp_IS: ...
case PyCmp_IS_NOT: ...
case PyCmp_IN:
res = PySequence_Contains(w, v);
if (res < 0)
return NULL;
break;
case PyCmp_NOT_IN: ...
case PyCmp_EXC_MATCH: ...
default:
return PyObject_RichCompare(v, w, op);
}
v = res ? Py_True : Py_False;
Py_INCREF(v);
return v;
}

This is where the paths split. The PyCmp_IN branch
does

int
PySequence_Contains(PyObject *seq, PyObject *ob)
{
Py_ssize_t result;
PySequenceMethods *sqm = seq->ob_type->tp_as_sequence;
if (sqm != NULL && sqm->sq_contains != NULL)
return (*sqm->sq_contains)(seq, ob);
result = _PySequence_IterSearch(seq, ob, PY_ITERSEARCH_CONTAINS);
return Py_SAFE_DOWNCAST(result, Py_ssize_t, int);
}

Note that a tuple is defined as

static PySequenceMethods tuple_as_sequence = {
...
(objobjproc)tuplecontains, /* sq_contains */
}; PyTypeObject PyTuple_Type = {
...
&tuple_as_sequence, /* tp_as_sequence */
...
};

So the branch

if (sqm != NULL && sqm->sq_contains != NULL)

will be taken and *sqm->sq_contains,
which is the function (objobjproc)tuplecontains,
will be taken.

This does

static int
tuplecontains(PyTupleObject *a, PyObject *el)
{
Py_ssize_t i;
int cmp; for (i = 0, cmp = 0 ; cmp == 0 && i < Py_SIZE(a); ++i)
cmp = PyObject_RichCompareBool(el, PyTuple_GET_ITEM(a, i),
Py_EQ);
return cmp;
}

...Wait, wasn't that PyObject_RichCompareBool what
the other branch took? Nope, that was PyObject_RichCompare.

That code path was short so it likely just comes down to the speed of these two. Let's compare.

int
PyObject_RichCompareBool(PyObject *v, PyObject *w, int op)
{
PyObject *res;
int ok; /* Quick result when objects are the same.
Guarantees that identity implies equality. */
if (v == w) {
if (op == Py_EQ)
return 1;
else if (op == Py_NE)
return 0;
} ...
}

The code path in PyObject_RichCompareBool pretty
much immediately terminates. For PyObject_RichCompare,
it does

PyObject *
PyObject_RichCompare(PyObject *v, PyObject *w, int op)
{
PyObject *res; assert(Py_LT <= op && op <= Py_GE);
if (v == NULL || w == NULL) { ... }
if (Py_EnterRecursiveCall(" in comparison"))
return NULL;
res = do_richcompare(v, w, op);
Py_LeaveRecursiveCall();
return res;
}

The Py_EnterRecursiveCall/Py_LeaveRecursiveCall combo
are not taken in the previous path, but these are relatively quick macros that'll short-circuit after incrementing and decrementing some globals.

do_richcompare does:

static PyObject *
do_richcompare(PyObject *v, PyObject *w, int op)
{
richcmpfunc f;
PyObject *res;
int checked_reverse_op = 0; if (v->ob_type != w->ob_type && ...) { ... }
if ((f = v->ob_type->tp_richcompare) != NULL) {
res = (*f)(v, w, op);
if (res != Py_NotImplemented)
return res;
...
}
...
}

This does some quick checks to call v->ob_type->tp_richcompare which
is

PyTypeObject PyUnicode_Type = {
...
PyUnicode_RichCompare, /* tp_richcompare */
...
};

which does

PyObject *
PyUnicode_RichCompare(PyObject *left, PyObject *right, int op)
{
int result;
PyObject *v; if (!PyUnicode_Check(left) || !PyUnicode_Check(right))
Py_RETURN_NOTIMPLEMENTED; if (PyUnicode_READY(left) == -1 ||
PyUnicode_READY(right) == -1)
return NULL; if (left == right) {
switch (op) {
case Py_EQ:
case Py_LE:
case Py_GE:
/* a string is equal to itself */
v = Py_True;
break;
case Py_NE:
case Py_LT:
case Py_GT:
v = Py_False;
break;
default:
...
}
}
else if (...) { ... }
else { ...}
Py_INCREF(v);
return v;
}

Namely, this shortcuts on left
== right
... but only after doing

    if (!PyUnicode_Check(left) || !PyUnicode_Check(right))

    if (PyUnicode_READY(left) == -1 ||
PyUnicode_READY(right) == -1)

All in all the paths then look something like this (manually recursively inlining, unrolling and pruning known branches)

POP()                           # Stack stuff
TOP() #
#
case PyCmp_IN: # Dispatch on operation
#
sqm != NULL # Dispatch to builtin op
sqm->sq_contains != NULL #
*sqm->sq_contains #
#
cmp == 0 # Do comparison in loop
i < Py_SIZE(a) #
v == w #
op == Py_EQ #
++i #
cmp == 0 #
#
res < 0 # Convert to Python-space
res ? Py_True : Py_False #
Py_INCREF(v) #
#
Py_DECREF(left) # Stack stuff
Py_DECREF(right) #
SET_TOP(res) #
res == NULL #
DISPATCH() #

vs

POP()                           # Stack stuff
TOP() #
#
default: # Dispatch on operation
#
Py_LT <= op # Checking operation
op <= Py_GE #
v == NULL #
w == NULL #
Py_EnterRecursiveCall(...) # Recursive check
#
v->ob_type != w->ob_type # More operation checks
f = v->ob_type->tp_richcompare # Dispatch to builtin op
f != NULL #
#
!PyUnicode_Check(left) # ...More checks
!PyUnicode_Check(right)) #
PyUnicode_READY(left) == -1 #
PyUnicode_READY(right) == -1 #
left == right # Finally, doing comparison
case Py_EQ: # Immediately short circuit
Py_INCREF(v); #
#
res != Py_NotImplemented #
#
Py_LeaveRecursiveCall() # Recursive check
#
Py_DECREF(left) # Stack stuff
Py_DECREF(right) #
SET_TOP(res) #
res == NULL #
DISPATCH() #

Now, PyUnicode_Check and PyUnicode_READY are
pretty cheap since they only check a couple of fields, but it should be obvious that the top one is a smaller code path, it has fewer function calls, only one switch statement and is just a bit thinner.

TL;DR:

Both dispatch to if
(left_pointer == right_pointer)
; the difference is just how much work they do to get there. in just
does less.

Why is 'x' in ('x',) faster than 'x' == 'x'?的更多相关文章

  1. faster r-cnn 在CPU配置下训练自己的数据

    因为没有GPU,所以在CPU下训练自己的数据,中间遇到了各种各样的坑,还好没有放弃,特以此文记录此过程. 1.在CPU下配置faster r-cnn,参考博客:http://blog.csdn.net ...

  2. r-cnn学习系列(三):从r-cnn到faster r-cnn

    把r-cnn系列总结下,让整个流程更清晰. 整个系列是从r-cnn至spp-net到fast r-cnn再到faster r-cnn.  RCNN 输入图像,使用selective search来构造 ...

  3. faster with MyISAM tables than with InnoDB or NDB tables

    http://dev.mysql.com/doc/refman/5.7/en/partitioning-limitations.html Performance considerations.  So ...

  4. situations where MyISAM will be faster than InnoDB

    http://www.tocker.ca/categories/myisam Converting MyISAM to InnoDB and a lesson on variance I'm abou ...

  5. Faster RNNLM (HS/NCE) toolkit

    https://github.com/kjw0612/awesome-rnn Faster Recurrent Neural Network Language Modeling Toolkit wit ...

  6. Faster R-CNN CPU环境搭建

    操作系统: bigtop@bigtop-SdcOS-Hypervisor:~/py-faster-rcnn/tools$ cat /etc/issue Ubuntu LTS \n \l Python版 ...

  7. Why is processing a sorted array faster than an unsorted array?

    这是我在逛 Stack Overflow 时遇见的一个高分问题:Why is processing a sorted array faster than an unsorted array?,我觉得这 ...

  8. Introducing the Accelerated Mobile Pages Project, for a faster, open mobile web

    https://googleblog.blogspot.com/2015/10/introducing-accelerated-mobile-pages.html October 7, 2015 Sm ...

  9. 论文阅读之:Is Faster R-CNN Doing Well for Pedestrian Detection?

    Is Faster R-CNN Doing Well for Pedestrian Detection? ECCV 2016   Liliang Zhang & Kaiming He 原文链接 ...

  10. 如何才能将Faster R-CNN训练起来?

    如何才能将Faster R-CNN训练起来? 首先进入 Faster RCNN 的官网啦,即:https://github.com/rbgirshick/py-faster-rcnn#installa ...

随机推荐

  1. array_filter()函数

    用回调函数过滤数组中的值 array_filter(array,callbackfunction); 返回过滤后的数组

  2. 【牛客网71E】 组一组(差分约束,拆位)

    传送门 NowCoder Solution 考虑一下看到这种区间或与区间与的关系,拆一下位. 令\(s_i\)表示前缀和,则: 那么如果现在考虑到了第\(i\)为,有如下4种可能: \(opt=1\) ...

  3. Cordova - 安装camera插件之后编译错误解决方法!

    安装camera插件之后,编译出错,错误截图如下: 刚开始以为是AAPT编译导致的,尝试关闭AAPT编译选项,但是不行,认真看了一下编译出错信息,应该是缺少文件导致的,随后在对应的目录中加入了缺失的文 ...

  4. 75道经典AI面试题,我就想把你们安排的明明白白的!(含答案)

    基础知识(开胃菜) Python 1.类继承 有如下的一段代码: class A(object): def show(self): print 'base show' class B(A): def ...

  5. AndroidStudio制作“我”的界面,设置,修改密码,设置密保和找回密码

    前言 大家好,给大家带来AndroidStudio制作"我"的界面,设置,修改密码,设置密保和找回密码的概述,希望你们喜欢 学习目标 掌握修改密码功能的开发,和实现用户密码的修改: ...

  6. python中使用双端队列解决回文问题

    双端队列:英文名字:deque (全名double-ended queue)是一种具有队列和栈性质的抽象数据类型. 双端队列中的元素可以从两端弹出,插入和删除操作限定在队列的两边进行. 双端队列可以在 ...

  7. 惊艳,Dubbo域名已改,也不再局限于Java!

    今天作者想去 Dubbo 官网查下相关资料,发现官方域名由 dubbo.io 直接跳转至 dubbo.apache.org 下了,然后突然回想起 Dubbo 已经在 2 月份正式进入了 Apache ...

  8. Spring 异常处理三种方式 @ExceptionHandler

    异常处理方式一. @ExceptionHandler 异常处理方式二. 实现HandlerExceptionResolver接口 异常处理方式三. @ControllerAdvice+@Excepti ...

  9. 理解 Python 的执行方式,与字节码 bytecode 玩耍 (下)

    上次写到,Python 的执行方式是把代码编译成bytecode(字节码)指令,然后由虚拟机来执行这些 bytecode 而 bytecode 长成这个样子:  b'|\x00\x00d\x01\x0 ...

  10. Jenkins系列之一——初识

    Jenkins Jenkins是一个开源软件项目,是基于Java开发的一种持续集成工具,用于监控持续重复的工作,旨在提供一个开放易用的软件平台,使软件的持续集成变成可能. 功能 Jenkins功能包括 ...