题意

题目链接

Sol

这个东西的学名应该叫“闵可夫斯基和”。就是合并两个凸包

首先我们先分别求出给出的两个多边形的凸包。合并的时候直接拿个双指针扫一下,每次选最凸的点就行了。

复杂度\(O(nlogn + n)\)

#include<bits/stdc++.h>
#define LL long long
//#define int long long
using namespace std;
const int MAXN = 1e6 + 10;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M;
struct Point {
LL x, y;
Point operator - (const Point &rhs) const {
return {x - rhs.x, y - rhs.y};
}
Point operator + (const Point &rhs) const {
return {x + rhs.x, y + rhs.y};
}
LL operator ^ (const Point &rhs) const {
return x * rhs.y - y * rhs.x;
}
bool operator < (const Point &rhs) const {
return x == rhs.x ? y < rhs.y : x < rhs.x;
}
bool operator == (const Point &rhs) const {
return x == rhs.x && y == rhs.y;
}
bool operator != (const Point &rhs) const {
return x != rhs.x || y != rhs.y;
}
};
vector<Point> v1, v2;
Point q[MAXN];
int top;
void insert(Point a) {
while(top > 1 && ((q[top] - q[top - 1]) ^ (a - q[top - 1])) < 0) top--;
q[++top] = a;
}
void GetConHull(vector<Point> &v) {
sort(v.begin(), v.end());
q[++top] = v[0];
for(int i = 1; i < v.size(); i++) if(v[i] != v[i - 1]) insert(v[i]);
for(int i = v.size() - 2; i >= 0; i--) if(v[i] != v[i + 1]) insert(v[i]);
v.clear();
for(int i = 1; i <= top; i++) v.push_back(q[i]); top = 0;
}
void Merge(vector<Point> &a, vector<Point> &b) {
vector<Point> c;
q[++top] = a[0] + b[0];
int i = 0, j = 0;
while(i + 1 < a.size() && j + 1< b.size()) {
Point n1 = (a[i] + b[j + 1]) - q[top], n2 = (a[i + 1] + b[j]) - q[top];
if((n1 ^ n2) < 0)
q[++top] = a[i + 1] + b[j], i++;
else
q[++top] = a[i] + b[j + 1], j++;
}
for(; i < a.size(); i++) q[++top] = a[i] + b[b.size() - 1];
for(; j < b.size(); j++) q[++top] = b[j] + a[a.size() - 1];
for(int i = 1; i <= top; i++) c.push_back(q[i]);
LL ans = 0;
//for(auto &g : c) printf("%d %d\n", g.x, g.y);
for(int i = 1; i < c.size() - 1; i++)
ans += (c[i] - c[0]) ^ (c[i + 1] - c[0]);
cout << ans;
}
signed main() {
N = read(); M = read();
for(int i = 1; i <= N; i++) {
int x = read(), y = read();
v1.push_back({x, y});
}
for(int i = 1; i <= M; i++) {
int x = read(), y = read();
v2.push_back({x, y});
}
GetConHull(v1);
GetConHull(v2);
Merge(v1, v2);
return 0;
}
/*
4 5
0 0 2 1 0 1 2 0
0 0 1 0 0 2 1 2 0 1
*/

BZOJ2564: 集合的面积(闵可夫斯基和 凸包)的更多相关文章

  1. bzoj2564: 集合的面积(闵可夫斯基和 凸包)

    题面 传送门 题解 花了一个下午的时间调出了一个稍微能看的板子--没办法网上的板子和咱的不太兼容-- 首先有一个叫做闵可夫斯基和的东西,就是给你两个点集\(A,B\),要你求一个点集\(C=\{x+y ...

  2. bzoj2564集合的面积

    题目描述 对于一个平面上点的集合P={(xi,yi )},定义集合P的面积F(P)为点集P的凸包的面积. 对于两个点集A和B,定义集合的和为: A+B={(xiA+xjB,yiA+yjB ):(xiA ...

  3. bzoj2564 集合的面积

    Description 对于一个平面上点的集合P={(xi,yi )},定义集合P的面积F(P)为点集P的凸包的面积. 对于两个点集A和B,定义集合的和为: A+B={(xiA+xjB,yiA+yjB ...

  4. bzoj 2564 集合的面积

    Description 对于一个平面上点的集合P={(xi,yi )},定义集合P的面积F(P)为点集P的凸包的面积. 对于两个点集A和B,定义集合的和为: A+B={(xiA+xjB,yiA+yjB ...

  5. 洛谷P4557 [JSOI2018]战争(闵可夫斯基和+凸包)

    题面 传送门 题解 看出这是个闵可夫斯基和了然而我当初因为见到这词汇是在\(shadowice\)巨巨的\(Ynoi\)题解里所以压根没敢学-- 首先您需要知道这个 首先如果有一个向量\(w\)使得\ ...

  6. HDU 5251 矩形面积(二维凸包旋转卡壳最小矩形覆盖问题) --2015年百度之星程序设计大赛 - 初赛(1)

    题目链接   题意:给出n个矩形,求能覆盖所有矩形的最小的矩形的面积. 题解:对所有点求凸包,然后旋转卡壳,对没一条边求该边的最左最右和最上的三个点. 利用叉积面积求高,利用点积的性质求最左右点和长度 ...

  7. poj 3348:Cows(计算几何,求凸包面积)

    Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6199   Accepted: 2822 Description ...

  8. UVa 10652(旋转、凸包、多边形面积)

    要点 凸包显然 长方形旋转较好的处理方式就是用中点的Vector加上旋转的Vector,然后每个点都扔到凸包里 多边形面积板子求凸包面积即可 #include <cstdio> #incl ...

  9. 闵可夫斯基和(Mincowsky sum)

    一.概述 官方定义:两个图形A,B的闵可夫斯基和C={a+b|a∈A,b∈B}通俗一点:从原点向图形A内部的每一个点做向量,将图形B沿每个向量移动,所有的最终位置的并便是闵可夫斯基和(具有交换律) 例 ...

随机推荐

  1. 解决“UnicodeEncodeError: 'gbk' codec can't encode character u'\xa9' in position 24051: illegal multibyte sequence”错误

    今天我在爬取一个网页时出现了下面这个错误: UnicodeEncodeError: 'gbk' codec can't encode character u'\xa9' in position 240 ...

  2. githug rename_commit 修改已经commit但还没push的一条message

    githug 第 45 关, 一开始对 git rebase -i 这个东西有误解, 记录一下正确的用法 ddmobadeMac-mini:git_hug ddmoba$ githug reset 4 ...

  3. HTML各个版本以及对应doctype

    HTML发布的正式历史版本: 1.HTML2.0 2.HTML3.2 3.HTML4.0 4.HTML4.01 5.XHTML1.0 6.XHTML1.1 7.XHTML2.0  中途放弃,未完成 8 ...

  4. 解决C#调用执行js报检索 COM 类工厂中 CLSID 为 {0E59F1D5-1FBE-11D0-8FF2-00A0D10038BC} 组件失败

    最近做了一个模拟请求的网站简化原网站的繁琐数据,提出有用的数据简单展示并完成post.由于原网站数据有js加密,所以我抓出原网站的js解密方法,由C#调用js得到解密后的数据. 整个抓包的框架是用的苏 ...

  5. 兼容多数浏览器的js添加收藏夹脚本

    浏览器不断发展,js的很多脚本需要跟进才能适应,目前多数代码对新版本浏览器(IE11, Firefox 27)无法适用,特关注跟进. 推荐代码1 适用浏览器:IE11(windows 8.1), Fi ...

  6. python字符串操作简单方法

    1.join #将字符中的每一个元素按照指定分隔符进行拼接 test='你说话带空格' print(test) t=' ' x='_' print(t.join(test)) print(x.join ...

  7. CentOS7安装tyk(内部部署)

    CentOS7安装tyk(内部部署) 参考 官方文档 github 环境准备 #确保端口3000处于打开状态:Dashboard使用该端口来提供GUI和Developer Portal #Tyk需要P ...

  8. underscore.js源码解析【数组】

    // Array Functions // --------------- // Get the first element of an array. Passing **n** will retur ...

  9. 音频标签化3:igor-8m项目的训练、评估与测试

    上一节介绍了youtube-8m项目,这个项目以youtube-8m dataset(简称8m-dataset)样本集为基础,进行训练.评估与测试.youtube-8m设计用于视频特征样本,但实际也适 ...

  10. C语言第八讲,指针*

    C语言第八讲,指针* 一丶简单理解指针 说到指针,很多人都说是C语言的重点. 也说是C语言的难点. 其实指针并不是难.而是很多人搞不清地址 和 值.以及指针类型. 为什么这样说. 假设有两个变量,如下 ...