UOJ #314. 【NOI2017】整数 | 线段树 压位
题目链接
题解
可爱的电音之王松松松出的题……好妙啊。
首先想一个朴素的做法!
把当前的整数的二进制当作01序列用线段树维护一下(序列的第i位就是整数中位权为\(2^k\)的那一位)。
如何做加法?一下子加一个整数比较麻烦,可以把整数拆成一个个二进制位,一位位地加1。如果当前要加一的位置就是0,直接加就好了;否则显然要进位,松松松出的题肯定肯定不能暴力进位骗分(=v=)……所以线段树维护区间是否全是1,每次加的时候找右边(即更高位)第一个为0的位置,然后把那个位置修改为1,b和那个位置中间所有的位置都改成0就好了。
像这样(为了看着不反人类,最低位在右边,最高位在左边):
001111111
10
---------
010000001
减法怎么做呢?如果这一位就是1则直接减,否则找右边第一个为1的位置,然后单点修改为0,区间修改为1即可。
110000001
10
---------
101111111
但是这样做还是会T的!
于是要压位!
把30(或60?)个位用一个数存起来,然后类似上面的这样做。注意这时候不要还把a一位位拆开加了,最多只用拆成两部分(为了契合线段树中压位后每一“位”的大小)然后分别加就好了……
代码:
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <queue>
#define space putchar(' ')
#define enter putchar('\n')
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
const int N = 500005, S = 60;
const ll INF = (1LL << S) - 1;
int n, m, t, pos[4*N];
ll data[N], tag[4*N];
bool all[4*N][2];
void single_change(int k, ll x){
if(pos[k] != -1) data[pos[k]] = x;
if(x == 0) all[k][0] = 1, all[k][1] = 0, tag[k] = 0;
else if(x == INF) all[k][0] = 0, all[k][1] = 1, tag[k] = INF;
else all[k][0] = all[k][1] = 0, tag[k] = -1;
}
void pushdown(int k){
if(tag[k] == -1) return;
single_change(k << 1, tag[k]);
single_change(k << 1 | 1, tag[k]);
tag[k] = -1;
}
void pushup(int k){
all[k][0] = all[k << 1][0] & all[k << 1 | 1][0];
all[k][1] = all[k << 1][1] & all[k << 1 | 1][1];
}
void build(int k, int l, int r){
all[k][0] = 1, tag[k] = pos[k] = -1;
if(l == r) return (void)(pos[k] = l);
int mid = (l + r) >> 1;
build(k << 1, l, mid);
build(k << 1 | 1, mid + 1, r);
}
void range_change(int k, int l, int r, int ql, int qr, ll x){
if(ql <= l && qr >= r) return single_change(k, x);
pushdown(k);
int mid = (l + r) >> 1;
if(ql <= mid) range_change(k << 1, l, mid, ql, qr, x);
if(qr > mid) range_change(k << 1 | 1, mid + 1, r, ql, qr, x);
pushup(k);
}
int find_nxt(int k, int l, int r, int p, int o){
if(all[k][!o]) return -1;
if(l == r) return l;
pushdown(k);
int mid = (l + r) >> 1, tmp;
if(p <= mid && (tmp = find_nxt(k << 1, l, mid, p, o)) != -1) return tmp;
return find_nxt(k << 1 | 1, mid + 1, r, p, o);
}
ll query(int k, int l, int r, int p){
if(l == r) return data[l];
pushdown(k);
int mid = (l + r) >> 1;
if(p <= mid) return query(k << 1, l, mid, p);
else return query(k << 1 | 1, mid + 1, r, p);
}
void add(int p, ll x){
ll tmp = query(1, 0, n, p);
range_change(1, 0, n, p, p, (tmp + x) & INF);
if(tmp + x > INF){
int tar = find_nxt(1, 0, n, p + 1, 0);
range_change(1, 0, n, tar, tar, data[tar] + 1);
if(p + 1 <= tar - 1) range_change(1, 0, n, p + 1, tar - 1, 0);
}
}
void sub(int p, ll x){
ll tmp = query(1, 0, n, p);
range_change(1, 0, n, p, p, (tmp - x) & INF);
if(tmp - x < 0){
int tar = find_nxt(1, 0, n, p + 1, 1);
range_change(1, 0, n, tar, tar, data[tar] - 1);
if(p + 1 <= tar - 1) range_change(1, 0, n, p + 1, tar - 1, INF);
}
}
int main(){
read(n), m = n, n = n / 2 + 2;
read(t), read(t), read(t);
build(1, 0, n);
ll op, a, b;
while(m--){
read(op), read(a);
if(op == 1){
read(b);
if(a > 0){
int p = b / S, rst = b % S;
ll x = a << rst & INF;
if(x) add(p, x);
p++, a >>= (S - rst);
if(b) add(p, a);
}
else{
a = -a;
int p = b / S, rst = b % S;
ll x = a << rst & INF;
if(x) sub(p, x);
p++, a >>= (S - rst);
if(b) sub(p, a);
}
}
else write(query(1, 0, n, a / S) >> (a % S) & 1), enter;
}
return 0;
}
UOJ #314. 【NOI2017】整数 | 线段树 压位的更多相关文章
- [BZOJ4942][Noi2017]整数 线段树+压位
用线段树来模拟加减法过程,维护连续一段中是否全为0/1. 因为数字很大,我们60位压一位来处理. #include<iostream> #include<cstring> #i ...
- 【BZOJ4942】[Noi2017]整数 线段树+DFS(卡过)
[BZOJ4942][Noi2017]整数 题目描述去uoj 题解:如果只有加法,那么直接暴力即可...(因为1的数量最多nlogn个) 先考虑加法,比较显然的做法就是将A二进制分解成log位,然后依 ...
- 2018.10.30 bzoj4942: [Noi2017]整数(线段树压位)
传送门 直接把修改的数拆成logloglog个二进制位一个一个修改是会TLETLETLE的. 因此我们把303030个二进制位压成一位储存在线段树里面. 然后维护区间中最靠左二进制位不为0/1的下标. ...
- 【洛谷3822】[NOI2017] 整数(线段树压位)
题目: 洛谷 3822 分析: 直接按题意模拟,完了. 将每次加 / 减拆成不超过 \(32\) 个对单独一位的加 / 减. 考虑给一个二进制位(下称「当前位」)加 \(1\) 时,如果这一位本来就是 ...
- noi2017 T1 整数 ——线段树
loj.ac上有 题目传送门 不过我还是把题目搬过来吧 整数(integer)[题目背景]在人类智慧的山巅,有着一台字长为 1048576 位的超级计算机,著名理论计算机科 学家 P 博士正用它进行 ...
- 【noi2017】 整数 线段树or模拟
ORZYYB 题目大意:你需要维护一个有$3\times 10^7$个二进制位的数,有一种修改方式和一种询问方式 对这个数加上$a\times2^b$,其中$|a|≤10^9$,$b≤3\times ...
- BZOJ4946[Noi2017]蔬菜——线段树+堆+模拟费用流
题目链接: [Noi2017]蔬菜 题目大意:有$n$种蔬菜,每种蔬菜有$c_{i}$个,每种蔬菜每天有$x_{i}$个单位会坏掉(准确来说每天每种蔬菜坏掉的量是$x_{i}-$当天这种蔬菜卖出量), ...
- POJ-2777-CountColor(线段树,位运算)
链接:https://vjudge.net/problem/POJ-2777#author=0 题意: Chosen Problem Solving and Program design as an ...
- UOJ 217 奇怪的线段树
http://uoj.ac/problem/217 题意就不X了,思路在这: 居然一开始把sap里面的mn设置为inf了,我是傻逼.. #include<cstdio> #include& ...
随机推荐
- 搭建Zookeepeer源码工程
一.搭建ant环境 1.下载ant&将ant解压至安装目录 http://ant.apache.org/bindownload.cgi 2.配置环境变量 ANT_HOME:配置ant的安装目录 ...
- 使用IE浏览提示:该页面无法显示
问题描述: 我们有一个外部招聘的网站,DBA反馈新版上线过后首页集成的登录部分页面无法打开,一直显示“该页面无法显示”! 问题排查: 1.因为我本身也不是负责这一块的业务,刚开始以为是网站本身程序的问 ...
- 【SDOI2017】数字表格
题面 题解 这道题目还有一种比较有意思的解法. 定义一种运算\((\mathbf f\oplus\mathbf g)(x) = \prod\limits_{d\mid x}\mathbf f(d)^{ ...
- JDK8漫谈——集合更强大
解决什么问题 集合计算不足 解决重复代码 背后思想 管道 封装 数据处理 内容说明 是什么 计算担当.集合用于数据存储,流用于数据计算,不会修改原始数据 内置循环.高级迭代器,内置循环和计算 单向.数 ...
- 【亲测有效】Centos安装完成docker后启动docker报错docker: unrecognized service的两种解决方案
今天在学习Docker的时候 使用yum install docker安装完后启动不了,报错如下: [root@Sakura ~]# service docker start docker: unre ...
- Html5计算MD5值
教程: http://www.tuicool.com/articles/InEBNz 组件: https://github.com/satazor/js-spark-md5
- 作用域&作用域链和with,catch语句&闭包
作用域(函数) 作用域:变量与函数的可访问范围,即作用域控制着变量与函数的可见性和生命周期; 在一些类C编程语言中花括号内的每一段代码都有各自的作用域,而且变量在声明它们的代码段外是不可见的,称之为块 ...
- Individual Project-word frequency
预计时间: 项目要求理解:半小时 c#语言了解:6小时 构思程序框架:2小时 编写调试程序:4小时 项目实际完成时间: 项目要求理解:半小时 c#语言了解:6小时 构思程序框架:2小时 编写调试程序: ...
- 【ML】Two-Stream Convolutional Networks for Action Recognition in Videos
Two-Stream Convolutional Networks for Action Recognition in Videos & Towards Good Practices for ...
- iOS GCD中级篇 - dispatch_semaphore(信号量)的理解及使用
理解这个概念之前,先抛出一个问题 问题描述: 假设现在系统有两个空闲资源可以被利用,但同一时间却有三个线程要进行访问,这种情况下,该如何处理呢? 或者 我们要下载很多图片,并发异步进行,每个下载都会开 ...