CF1601E Phys Ed Online
考虑一个贪心。
我们一定采取的方案是
\(b_i = \min_{j = i - k}^i a_j\)
\(\sum a_l + b_{l + k} + \min_{i = 1}^2{b_{l + ik}} + \min_{i = 1}^3{b_{l + ik}}......\min_{i = 1}^t{b_{l + ik}}\)
那么我们看出来可以只考虑同余系的关键点即可。
但是我们发现我们不好计算答案。
一个想要的考虑是扫描线。
但是我们发现这样需要支持区间加,区间取 \(0\),区间加等差数列,单点查。
然后我发现我不会区间加等差数列,所以只能考虑正解做法。
考虑我们差分答案,记\(f_i\)为一直到结尾的答案,考虑倒序枚举\(i\),直接单调栈,其转移显然。
那么\([l,r]\)答案应为\(f_i - f_p + b_p * {(r - p + 1)} + a_l\)
\(p\)为\([l,r]\)中最小值位置。
考虑笛卡尔树上的\([l,r]\)的最小值位置即其两点\(LCA\)位置。
那么复杂度为\(O(nlog{\frac{n}{k}} + q)\)
较正解做法\(O(nlog + q)\) 效率应该差距不大。
所以这里采用正解做法即ST表。
#include<bits/stdc++.h>
#define ll long long
#define N 600005
#define int ll
int n,q,k;
std::pair<int,int> g[N][30];//ST表
int lg[N],b[N];
std::pair<int,int> get(int l,int r){
if(l > r)
return std::pair<int,int>(0,0);
int p = lg[r - l + 1];
return std::min(g[l][p],g[r - (1ll << p) + 1][p]);
}
int stk[N],top,nxt[N],f[N];
ll calc(int l,int r){
int p = get(l - k,r).second;
int tmp = g[p][0].first;
if(p == l - k)
p += k;
p = p + (r - p) % k;
return f[l] - f[p] + (r / k - p / k + 1) * b[p];
}
signed main(){
scanf("%d%d%d",&n,&q,&k);
lg[0] = -1;
for(int i = 1;i <= n;++i)
lg[i] = lg[i / 2] + 1;
for(int i = 1;i <= n;++i){
scanf("%d",&g[i][0].first);
g[i][0].second = i;
}
for(int j = 1;j <= 20;++j)
for(int i = 1;i + (1ll << j) - 1 <= n;++i)
g[i][j] = std::min(g[i][j - 1],g[i + (1ll << (j - 1))][j - 1]);
for(int i = k + 1;i <= n;++i)
b[i] = get(i - k,i).first;
for(int l = k + 1;l + k <= n && l <= 2 * k;++l){
int r = l + (n - l) / k * k;
top = 1;
for(int i = r;i >= l;i -= k){
while(top > 1 && b[i] <= b[stk[top]])
top -- ;
nxt[i] = stk[top];
f[i] = f[nxt[i]] + b[i] * (nxt[i] / k - i / k);
stk[++top] = i;
}
}
while(q -- ){
int l,r;
scanf("%d%d",&l,&r);
r = l + (r - l) / k * k;
std::cout<<(1ll * g[l][0].first + 1ll * (l + k <= r? calc(l + k,r) : 0))<<std::endl;
}
}
CF1601E Phys Ed Online的更多相关文章
- 贪心/构造/DP 杂题选做Ⅲ
颓!颓!颓!(bushi 前传: 贪心/构造/DP 杂题选做 贪心/构造/DP 杂题选做Ⅱ 51. CF758E Broken Tree 讲个笑话,这道题是 11.3 模拟赛的 T2,模拟赛里那道题的 ...
- EDdb 是ED数据
eddb 是ED数据统计汇总软件的简称,用于统计汇总企事业单位的各类信息数据. 采用Excel界面,操作简单. 对各类信息数据,均可以自定义数据格式,通过internet联网,收集各类信息数据,并通 ...
- ios CoreBluetooth 警告 is being dealloc'ed while pending connection
ios CoreBluetooth 警告 is being dealloc'ed while pending connection CoreBluetooth[WARNING] <CBPerip ...
- ed编辑器使用
evilxr@IdeaPad:/tmp$ ed aa.c 0 a enter another words hello nice www.evilxr.com . w aa.c 46 q a 表示添加内 ...
- Linux ed命令
$ ed <- 激活 ed 命令 a <- 告诉 ed 我要编辑新文件 My name is Titan. <- 输入第 ...
- ED/EP系列5《消费指令》
1. 消费交易 消费交易允许持卡人使用电子存折或电子钱包的余额进行购物或获取服务. 特点: 1) --可以在销售点终端(POS)上脱机进行 2) --使用电子存折进行的消费交易必须提交个人识别码(PI ...
- ED/EP系列4《圈存指令》
1. 圈存交易 通过圈存交易,持卡人可将其在银行相应账户上的资金划入电子存折或电子钱包中. 特点: 1)--必须在金融终端上联机进行; 2)--必须提交个人识别码(PIN) 步骤: 1) --终端: ...
- ED/EP系列1《简介》
电子存折(ED:ElectronicDeposit)一种为持卡人进行消费.取现等交易而设计的支持个人识别码(PIN)保护的金融IC卡应用.它支持圈存.圈提.消费和取现等交易. 电子钱包(EP:Elec ...
- ED/EP简介
ED:electronic Deposit,电子存折 EP:electronic Purse,电子钱包 PIN:personal identification number,个人识别码 MAC:Mes ...
随机推荐
- kivy画个半圆
from kivy.uix.boxlayout import BoxLayout from kivy.app import App class BoxLayoutWidget(BoxLayout): ...
- BUAA-OO-JML
BUAA-OO-JML JML 概念与 toolchain JML 是一种为 Java 程序设计的.遵循 design by contract 范式的.基于 Hoare Logic 构建的 behav ...
- BUAA_2020_软件工程_结对项目作业
项目 内容 这个作业属于哪个课程 班级博客 这个作业的要求在哪里 作业要求 我在这个课程的目标是 掌握软件工程的思路方法 这个作业在哪个具体方面帮助我实现目标 学习结对编程 教学班级 006 项目地址 ...
- 「笔记」$Min\_25$筛
总之我也不知道这个奇怪的名字是怎么来的. \(Min\_25\)筛用来计算一类积性函数前缀和. 如果一个积性函数\(F(x)\)在质数单点是一个可以快速计算的关于此质数的多项式. 那么可以用\(Min ...
- numpy中的nan和常用方法
1.数组的拼接 import numpy as np t1 = np.array([[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]]) t2 = np.array([ ...
- 旋转数组的最小数字 牛客网 剑指Offer
旋转数组的最小数字 牛客网 剑指Offer 题目描述 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转. 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素. 例如数组{3,4, ...
- hdu 3038 How Many Answers Are Wrong(并查集)
题意: N和M.有N个数. M个回答:ai, bi, si.代表:sum(ai...bi)=si.如果这个回答和之前的冲突,则这个回答是假的. 问:M个回答中有几个是错误的. 思路: 如果知道sum( ...
- hdu 1754 I Hate It(单点更新,区段查最值)
题意: N个成绩.M个操作. Q a b:查询第a个到第b个成绩中最高成绩 U a b:将第a个成绩改成b 思路: 看代码,, 代码: const int maxn = 200010; int max ...
- u-boot 1.1.6 start.S 代码学习<转>
---转自 http://blog.csdn.net/rockhard/article/details/4166642 ------ /* 参考了别人的一些笔记,看完了启动代码. 本文档记录在看代码时 ...
- Web实时通信,SignalR真香,不用愁了
前言 对于B/S模式的项目,基础的场景都是客户端发起请求,服务端返回响应结果就结束了一次连接:但在很多实际应用场景中,这种简单的请求和响应模式就显得很吃力,比如消息通知.监控看板信息自动刷新等实时通信 ...