记可乐为1,汉堡为-1,即求过程中绝对值不超过k的最短路。

然后发现k的范围仅为10,也就是说过程中合法的值仅有21种,因此跑一遍dij或spfa(嘿嘿嘿)即可。

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define pi pair<int,int>
4 #define mp make_pair
5 #define fi first
6 #define se second
7 #define N 10005
8 queue<pi >q;
9 struct ji{
10 int nex,to,len;
11 }edge[N*20];
12 int E,t,n,m,k,x,y,z,ans,d[N][41],vis[N][41],head[N],p[N];
13 void add(int x,int y,int z){
14 edge[E].nex=head[x];
15 edge[E].to=y;
16 edge[E].len=z;
17 head[x]=E++;
18 }
19 int main(){
20 scanf("%d",&t);
21 while (t--){
22 scanf("%d%d%d",&n,&m,&k);
23 memset(d,0x3f,sizeof(d));
24 memset(head,-1,sizeof(head));
25 memset(vis,0,sizeof(vis));
26 E=0;
27 for(int i=1;i<=n;i++){
28 scanf("%d",&p[i]);
29 p[i]=p[i]*2-3;
30 }
31 for(int i=1;i<=m;i++){
32 scanf("%d%d%d",&x,&y,&z);
33 add(x,y,z);
34 add(y,x,z);
35 }
36 scanf("%d%d",&x,&y);
37 d[x][p[x]+20]=0;
38 vis[x][p[x]+20]=1;
39 q.push(mp(x,p[x]+20));
40 while (!q.empty()){
41 pi o=q.front();
42 q.pop();
43 vis[o.fi][o.se]=0;
44 for(int i=head[o.fi];i!=-1;i=edge[i].nex){
45 x=edge[i].to;
46 if ((abs(o.se+p[x]-20)<=k)&&(d[o.fi][o.se]+edge[i].len<d[x][o.se+p[x]])){
47 d[x][o.se+p[x]]=d[o.fi][o.se]+edge[i].len;
48 if (!vis[x][o.se+p[x]]){
49 q.push(mp(x,o.se+p[x]));
50 vis[x][o.se+p[x]]=1;
51 }
52 }
53 }
54 }
55 ans=0x3f3f3f3f;
56 for(int i=20-k;i<=k+20;i++)ans=min(ans,d[y][i]);
57 if (ans==0x3f3f3f3f)ans=-1;
58 printf("%d\n",ans);
59 }
60 }

[bzoj5511]大中锋的游乐场的更多相关文章

  1. [TJOI2019]大中锋的游乐场——最短路+DP

    题目链接: [TJOI2019]大中锋的游乐场 题目本质要求的还是最短路,但因为有第二维权值(汽水看成$+1$,汉堡看成$-1$)的限制,我们在最短路的基础上加上一维$f[i][j]$表示到达$i$节 ...

  2. 【题解】Luogu P5340 [TJOI2019]大中锋的游乐场

    原题传送门 没想到省选也会出这种题??! 实际就是一个带有限制的最短路 因为\(k<=10\),所以我们珂以暴力将每个点的权值分为[-k,k],为了方便我们珂以转化成[0,2k],将汉堡的权值记 ...

  3. [洛谷P5340][TJOI2019]大中锋的游乐场

    题目大意:有$n(n\leqslant10^4)$个点,$m(m\leqslant10^5)$条边的无向图,每个点有一个属性$A/B$,要求$|cnt_A-cnt_B|\leqslant k(k\le ...

  4. 「TJOI2019」大中锋的游乐场

    题目链接 问题分析 比较明显的最短路模型.需要堆优化的dij.建图的时候注意细节就好. 参考程序 #include <bits/stdc++.h> #define LL long long ...

  5. luogu P5340 [TJOI2019]大中锋的游乐场

    传送门 要求经过路径汉堡的点和可乐的点个数之差绝对值\(\le k\),所以可以考虑dp,\(f_{i,j}\)表示到点\(i\),汉堡的点个数减可乐的点的个数为\(j\)的最短距离,注意一下负下标处 ...

  6. [TJOI2019]甲苯先生和大中锋的字符串——后缀自动机+差分

    题目链接: [TJOI2019]甲苯先生和大中锋的字符串 对原串建后缀自动机并维护$parent$树上每个点的子树大小,显然子树大小为$k$的节点所代表的子串出现过$k$次,那么我们需要将$[len[ ...

  7. 洛谷P5341 [TJOI2019]甲苯先生和大中锋的字符串

    原题链接P5341 [TJOI2019]甲苯先生和大中锋的字符串 题目描述 大中锋有一个长度为 n 的字符串,他只知道其中的一个子串是祖上传下来的宝藏的密码.但是由于字符串很长,大中锋很难将这些子串一 ...

  8. Tjoi2019 甲苯先生和大中锋的字符串 后缀自动机_差分

    tjoi胆子好大,直接出了两道送分题...... 都 9102 年了,还有省选出模板题QAQ...... Code: #include <bits/stdc++.h> #define se ...

  9. 【题解】Luogu P5341 [TJOI2019]甲苯先生和大中锋的字符串

    原题传送门 实际按照题意模拟就行 我们先求出字符串的sa 因为要在字符串中出现k次,所以我们枚举\(l,r(r-l+1=k)\)看一共有多少种合法的方案 合法方案的长度下界\(lb\)为\(Max(h ...

随机推荐

  1. 从commons-beanutils反序列化到shiro无依赖的漏洞利用

    目录 0 前言 1 环境 2 commons-beanutils反序列化链 2.1 TemplatesImple调用链 2.2 PriorityQueue调用链 2.3 BeanComparator ...

  2. WIN10下的VMware与Docker冲突的解决方案

    VMARE版本升级到15.5以上 WIN10升级到2004版本以上 Hyper-V为开启状态

  3. SpringBoot入门06-Thymeleaf显示作用域对象种的对象

    作用域对象request,session, servletContext中的数据在Thymeleaf中的显示都是相同的 作用域对象中的 List和Set的集合在html中的显示是相同的 作用域对象中的 ...

  4. 成功在Caterpillar代码中插入事件对象-20200917

    首先搞清楚了Caterpillar的solidity代码生成机制.Caterpillar分为Caterpillar Core和 executepanel两部分. executePanel是UI前端,用 ...

  5. 初学python写个自娱自乐的小游戏

    一.摘要 当编写完后的代码执行第一次后达到了目标的预期效果,内心有些许满足,但是当突发情况产生后,程序便不能正常运行,于是准备从简单的版本开始出发,综合考虑使用者的需求,和使用过程中会遇到的问题,一步 ...

  6. Codeforces Round #750 (Div. 2)

    Codeforces Round #750 (Div. 2) A. Luntik and Concerts 思路分析: 首先我们可以肯定的是a,b,c都大于等于1,所以我们先让它们自己抵消自己,最后a ...

  7. 什么是产品待办列表?(What is Product Backlog)

    正如scrum指南中所描述的,产品待办事项列表是一个紧急而有序的列表,其中列出了改进产品所需的内容.它是scrum团队承担的工作的唯一来源. 在sprint计划 (Sprint Planning)活动 ...

  8. Spring Security中配置AccessDeniedHandler没有生效

    现象 在 WebSecurityConfigurerAdapter 配置了如下代码: // 自定义未授权和未登录异常 http.exceptionHandling() .accessDeniedHan ...

  9. elasticsearch父子文档处理(join)

    elasticsearch父子文档处理 join 一.背景 二.需求 三.前置知识 四.实现步骤 1.创建 mapping 2.添加父文档数据 3.添加子文档 4.查询文档 1.根据父文档id查询它下 ...

  10. 梦开始的地方(Noip模拟3) 2021.5.24

    T1 景区路线规划(期望dp/记忆化搜索) 一看题目发现肯定是概率期望题,再仔细想想这三天做的题,就知道是个期望dp. 考试思路(错): 因为聪聪与可可的10分打法根深蒂固,导致在考试时想到了用深搜( ...