拉普拉斯平滑(Laplacian smoothing)
概念
- 零概率问题:在计算事件的概率时,如果某个事件在观察样本库(训练集)中没有出现过,会导致该事件的概率结果是 $0$ 。这是不合理的,不能因为一个事件没有观察到,就被认为该事件一定不可能发生(即该事件的概率为 $0$ )。
拉普拉斯平滑(Laplacian smoothing) 是为了解决零概率的问题。
- 法国数学家 拉普拉斯 最早提出用 加 $1$ 的方法,估计没有出现过的现象的概率。
- 理论假设:假定训练样本很大时,每个分量 $x$ 的计数加 $1$ 造成的估计概率变化可以忽略不计,但可以方便有效的避免零概率问题
具体公式
对于一个随机变量 $\mathrm{z} $ , 它的取值范围是 $\{1,2,3 \ldots, \mathrm{k}\} $, 对于 $\mathrm{m} $ 次试验后的观测 结果 $ \left\{\mathrm{z}^{(1)}, \mathrm{z}^{(2)}, \mathrm{z}^{(3)}, \ldots, \mathrm{z}^{(\mathrm{m})}\right\} $, 极大似然估计按照下式计算:
$\varphi_{j}=\frac{\sum_{i=1}^{m} I\left\{z^{(i)}=j\right\}}{m}$
使用 Laplace 平滑后, 计算公式变为:
$\varphi_{j}=\frac{\sum_{i=1}^{m} I\left\{z^{(i)}=j\right\}+1}{m+\mathrm{k}}$
即在分母上加上取值范围的大小, 在分子加 $1$ 。
总结: 分子加一,分母加 $K$,$K$ 代表类别数目。
应用场景举例
假设在文本分类中,有 $3$ 个类:$C_1$、$C_2$、$C_3$
在指定的训练样本中,某个词语 $K_1$ ,在各个类中观测计数分别为 $0$,$990$,$10$。
则对应 $K_1$ 的概率为 $0,0.99,0.01$。
显然 $C_1$ 类中概率为 $0$,不符合实际。
于是对这三个量使用拉普拉斯平滑的计算方法如下:
$1/1003 = 0.001$,$991/1003=0.988$,$11/1003=0.011$
在实际的使用中也经常使用加 $λ$($0≤λ≤1$)来代替简单加 $1$。如果对 $N$个计数都加上 $λ$,这时分母也要记得加上 $N*λ$。
拉普拉斯平滑(Laplacian smoothing)的更多相关文章
- 拉普拉斯平滑处理 Laplace Smoothing
背景:为什么要做平滑处理? 零概率问题,就是在计算实例的概率时,如果某个量x,在观察样本库(训练集)中没有出现过,会导致整个实例的概率结果是0.在文本分类的问题中,当一个词语没有在训练样本中出现,该词 ...
- 拉普拉斯矩阵(Laplacian Matrix) 及半正定性证明
摘自 https://blog.csdn.net/beiyangdashu/article/details/49300479 和 https://en.wikipedia.org/wiki/Lapla ...
- 深度学习面试题28:标签平滑(Label smoothing)
目录 产生背景 工作原理 参考资料 产生背景 假设选用softmax交叉熵训练一个三分类模型,某样本经过网络最后一层的输出为向量x=(1.0, 5.0, 4.0),对x进行softmax转换输出为: ...
- SC3聚类 | 拉普拉斯矩阵 | Laplacian matrix | 图论 | R代码
Laplacian和PCA貌似是同一种性质的方法,坐标系变换.只是拉普拉斯属于图论的范畴,术语更加专业了. 要看就把一篇文章看完整,再看其中有什么值得借鉴的,总结归纳理解后的东西才是属于你的. 问题: ...
- 统计学习1:朴素贝叶斯模型(Numpy实现)
模型 生成模型介绍 我们定义样本空间为\(\mathcal{X} \subseteq \mathbb{R}^n\),输出空间为\(\mathcal{Y} = \{c_1, c_2, ..., c_K\ ...
- AI人工智能专业词汇集
作为最早关注人工智能技术的媒体,机器之心在编译国外技术博客.论文.专家观点等内容上已经积累了超过两年多的经验.期间,从无到有,机器之心的编译团队一直在积累专业词汇.虽然有很多的文章因为专业性我们没能尽 ...
- NLP相关问题中文本数据特征表达初探
1. NLP问题简介 0x1:NLP问题都包括哪些内涵 人们对真实世界的感知被成为感知世界,而人们用语言表达出自己的感知视为文本数据.那么反过来,NLP,或者更精确地表达为文本挖掘,则是从文本数据出发 ...
- 一步步教你轻松学朴素贝叶斯模型算法Sklearn深度篇3
一步步教你轻松学朴素贝叶斯深度篇3(白宁超 2018年9月4日14:18:14) 导读:朴素贝叶斯模型是机器学习常用的模型算法之一,其在文本分类方面简单易行,且取得不错的分类效果.所以很受欢迎,对 ...
- 生成学习算法(Generative Learning algorithms)
一.引言 前面我们谈论到的算法都是在给定\(x\)的情况下直接对\(p(y|x;\theta)\)进行建模.例如,逻辑回归利用\(h_\theta(x)=g(\theta^T x)\)对\(p(y|x ...
随机推荐
- 筛选Table.SelectRows-文本与数值(Power Query 之 M 语言)
数据源: 包含文本与数值的任意数据 目标: 对文本和数值进行筛选 M公式: = Table.SelectRows( 表, 筛选条件) 筛选条件: 等于:each [指定列] = "指定值&q ...
- Git的基本使用(只是基本使用)
git上传 1.克隆到本地 git clone + git项目地址 2.添加文件 git add * 添加所有文件到本地仓库 3.查看状态 git status 4.标记 git commit -m ...
- 二、Uniapp+vue+腾讯IM+腾讯音视频开发仿微信的IM聊天APP,支持各类消息收发,音视频通话,附vue实现源码(已开源)-腾讯云后台配置TXIM
项目文章索引 1.项目引言 2.腾讯云后台配置TXIM 3.配置项目并实现IM登录 4.会话好友列表的实现 5.聊天输入框的实现 6.聊天界面容器的实现 7.聊天消息项的实现 8.聊天输入框扩展面板的 ...
- flutter 学习笔记
常用属性 container 填充padding,边距margins,边框borders,背景色color, decoration: 渐变gradient-Alignment(x,y),圆角borde ...
- JAVA实现QQ第三方登录
首先在QQ互联: https://connect.qq.com/manage.html 申请账号,并且进行资料审核,同时创建应用(设置回调地址) 申请应用完后,会有app_ID.app_KEY等参数 ...
- Linux(Centos)安装git
直接使用yum源安装git 安装的版本是1.8.3.1 yum install -y git 安装完成后,查看版本 [root@master ~]# git --version git version ...
- 【LeetCode】1182. Shortest Distance to Target Color 解题报告 (C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 字典+二分查找 日期 题目地址:https://lee ...
- 【LeetCode】62. Unique Paths 解题报告(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址:https://leetcode.com/problems/unique-pa ...
- 【LeetCode】166. Fraction to Recurring Decimal 解题报告(Python)
[LeetCode]166. Fraction to Recurring Decimal 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingz ...
- 【剑指Offer】序列化二叉树 解题报告(Python)
[剑指Offer]序列化二叉树 解题报告(Python) 标签(空格分隔): 剑指Offer 题目地址:https://www.nowcoder.com/ta/coding-interviews 题目 ...