Network

Description

Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each worker of the company must have access to the whole network, each hub must be accessible by cables from any other hub (with possibly some intermediate hubs). 
Since cables of different types are available and shorter ones are cheaper, it is necessary to make such a plan of hub connection, that the maximum length of a single cable is minimal. There is another problem — not each hub can be connected to any other one because of compatibility problems and building geometry limitations. Of course, Andrew will provide you all necessary information about possible hub connections. 
You are to help Andrew to find the way to connect hubs so that all above conditions are satisfied. 

Input

The first line of the input contains two integer numbers: N - the number of hubs in the network (2 <= N <= 1000) and M - the number of possible hub connections (1 <= M <= 15000). All hubs are numbered from 1 to N. The following M lines contain information about possible connections - the numbers of two hubs, which can be connected and the cable length required to connect them. Length is a positive integer number that does not exceed 106. There will be no more than one way to connect two hubs. A hub cannot be connected to itself. There will always be at least one way to connect all hubs.

Output

Output first the maximum length of a single cable in your hub connection plan (the value you should minimize). Then output your plan: first output P - the number of cables used, then output P pairs of integer numbers - numbers of hubs connected by the corresponding cable. Separate numbers by spaces and/or line breaks.

Sample Input

4 6
1 2 1
1 3 1
1 4 2
2 3 1
3 4 1
2 4 1

Sample Output

1
3
1 2
1 3
3 4

题解:原题目数据输出有问题,该题就是典型的Krusal算法,这里使用并查集判断有没有环形成。

#include <iostream>
#include<algorithm>
#include<stdio.h>
#include<cstring>
using namespace std;
typedef long long ll;
const int maxn=20000;
int pre[maxn],height[maxn];
void init_set(int n){
for (int i = 1; i <= n; i++){
pre[i]=i;
}
memset(height,0,sizeof(height));
} int find_set(int x){
return x==pre[x]?x:pre[x]=find_set(pre[x]);
}
void union_set(int x,int y){
x= find_set(x);
y= find_set(y);
if(x==y)return;
if(height[x]==height[y]){
height[x]=height[x]+1;
pre[y]=x;
}else{
if(height[x]<height[y]) pre[x]=y;
else{
pre[y]=x;
}
}
} struct edge{
int u,v,w;
bool operator <(const edge& a)const{
return w<a.w;
}
};
int main(){
int n,m;
while(~scanf("%d%d",&n,&m)){
init_set(n);
edge* edges = new edge[m+1];
bool *record=new bool[m+1];
// memset(record,false,sizeof(record));
for (int i = 1; i <=m; i++){
record[i]=false;
scanf("%d%d%d",&edges[i].u,&edges[i].v,&edges[i].w);
}
sort(edges+1,edges+m+1);
int maxcable=edges[0].w,sums=0,num=0;
int u,v;
for (int i = 1; i <=m; i++){
u=edges[i].u;
v=edges[i].v;
if(find_set(u)!=find_set(v)){
union_set(u,v);
num++;
record[i]=true;
}
if(num>=n-1){
maxcable=edges[i].w;
break;
}
}
cout<<maxcable<<endl;
cout<<n-1<<endl;
for (int i = 1; i<=m; i++){
if(record[i]){
cout<<edges[i].u<<" "<<edges[i].v<<endl;
}
}
}
}

POJ1861 Network (Kruskal算法 +并查集)的更多相关文章

  1. 最小生成树(Minimum Spanning Tree)——Prim算法与Kruskal算法+并查集

    最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题.我们首先用通俗的语言解释它的定义: 对于有n个节点的有权无向连通图,寻 ...

  2. 模板——最小生成树kruskal算法+并查集数据结构

    并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...

  3. 图论 Kruskal算法 并查集

    #include<iostream> #include<cstring> #include<string> #include<cstdio> #incl ...

  4. poj1251 Jungle Roads Kruskal算法+并查集

    时限: 1000MS   内存限制: 10000K 提交总数: 37001   接受: 17398 描述 热带岛屿拉格里山的首长有个问题.几年前,大量的外援花在了村庄之间的额外道路上.但是丛林不断地超 ...

  5. 货车运输-洛谷-1967-LCA+最大生成树(kruskal(并查集))

    传送门 一道:LCA+最大生成树 个人认为把这两个的板子写好(并熟练掌握了之后)就没什么难的 (但我还是de了好久bug)qwq 最大生成树:其实就是最小生成树的变形 我用的是kruskal (个人觉 ...

  6. BZOJ 2342: [Shoi2011]双倍回文 马拉车算法/并查集

    2342: [Shoi2011]双倍回文 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1123  Solved: 408 题目连接 http://w ...

  7. 近期公共祖先(LCA)——离线Tarjan算法+并查集优化

    一. 离线Tarjan算法 LCA问题(lowest common ancestors):在一个有根树T中.两个节点和 e&sig=3136f1d5fcf75709d9ac882bd8cfe0 ...

  8. POJ 1861 Network (Kruskal算法+输出的最小生成树里最长的边==最后加入生成树的边权 *【模板】)

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14021   Accepted: 5484   Specia ...

  9. UVALive 3027 Corporative Network 带权并查集

                         Corporative Network A very big corporation is developing its corporative networ ...

随机推荐

  1. Vulnhub----bulldog靶场笔记

    前提条件 kali和bulldog靶机的的ip地址在同一个网段 本测试环境: kali:192.168.56.102 bulldog:192.168.56.101 主机探测 利用kali的netdis ...

  2. ElasticSearch进阶篇(一)--版本控制

    一.前言 ElasticSearch(以下简称ES)的数据写入支持高并发,高并发就会带来很普遍的数据一致性问题.常见的解决方法就是加锁.同样,ES为了保证高并发写的数据一致性问题,加入了类似于锁的实现 ...

  3. SpringMVC学习08(拦截器)

    8.拦截器 概述 SpringMVC的处理器拦截器类似于Servlet开发中的过滤器Filter,用于对处理器进行预处理和后处理.开发者可以自己定义一些拦截器来实现特定的功能. 过滤器与拦截器的区别: ...

  4. sqli-labs lesson 54-65

    less 54 需要从数据库的CHALLENGES表中取出key值输入,输入对了才算通过,但是只能做10次尝试. 这里id被单引号包裹,注意闭合单引号即可,剩下的就可以参照less 1获取表中信息即可 ...

  5. STM32—驱动RFID-RC522模块

    文章目录 一.S50(M1)卡介绍 1.S50(M1)卡基础知识 2.内部信息 3.存取控制 4.数据块的存取控制 5.控制块的存取控 6.工作原理 7.M1与读卡器的通信 二.RC522工程代码详解 ...

  6. vue同一个页面可以有多个router-view

    参考:https://blog.csdn.net/u011615787/article/details/80075240 参考:https://router.vuejs.org/zh/guide/es ...

  7. c++与c#混合编程

    C#写界面比较方便,而C++则擅长写算法,所以将两者结合起来将会加快程序的开发速度,并保证程序的质量.但C#与C++的混合编程有很多细节问题需要注意,下面简要列举一些并指出相应的解决办法. 1. 将本 ...

  8. 输入URL后浏览器的过程

    In this article, I want my readers to get a picture of a very basic concept of the web world. Previo ...

  9. springmvc框架(Spring SpringMVC, Hibernate整合)

    直接干货 model 考虑给用户展示什么.关注支撑业务的信息构成.构建成模型. control 调用业务逻辑产生合适的数据以及传递数据给视图用于呈献: view怎样对数据进行布局,以一种优美的方式展示 ...

  10. Web应用安全防护-WAF

    web应用开发中不可避免需要考虑web应用的安全问题,那么常见的安全风险包含哪些呢? Web应用常见的安全风险 在web应用开发中可能存在以下的安全风险: 安全风险Top 10 A1:2017-注入 ...