Network

Description

Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each worker of the company must have access to the whole network, each hub must be accessible by cables from any other hub (with possibly some intermediate hubs). 
Since cables of different types are available and shorter ones are cheaper, it is necessary to make such a plan of hub connection, that the maximum length of a single cable is minimal. There is another problem — not each hub can be connected to any other one because of compatibility problems and building geometry limitations. Of course, Andrew will provide you all necessary information about possible hub connections. 
You are to help Andrew to find the way to connect hubs so that all above conditions are satisfied. 

Input

The first line of the input contains two integer numbers: N - the number of hubs in the network (2 <= N <= 1000) and M - the number of possible hub connections (1 <= M <= 15000). All hubs are numbered from 1 to N. The following M lines contain information about possible connections - the numbers of two hubs, which can be connected and the cable length required to connect them. Length is a positive integer number that does not exceed 106. There will be no more than one way to connect two hubs. A hub cannot be connected to itself. There will always be at least one way to connect all hubs.

Output

Output first the maximum length of a single cable in your hub connection plan (the value you should minimize). Then output your plan: first output P - the number of cables used, then output P pairs of integer numbers - numbers of hubs connected by the corresponding cable. Separate numbers by spaces and/or line breaks.

Sample Input

4 6
1 2 1
1 3 1
1 4 2
2 3 1
3 4 1
2 4 1

Sample Output

1
3
1 2
1 3
3 4

题解:原题目数据输出有问题,该题就是典型的Krusal算法,这里使用并查集判断有没有环形成。

#include <iostream>
#include<algorithm>
#include<stdio.h>
#include<cstring>
using namespace std;
typedef long long ll;
const int maxn=20000;
int pre[maxn],height[maxn];
void init_set(int n){
for (int i = 1; i <= n; i++){
pre[i]=i;
}
memset(height,0,sizeof(height));
} int find_set(int x){
return x==pre[x]?x:pre[x]=find_set(pre[x]);
}
void union_set(int x,int y){
x= find_set(x);
y= find_set(y);
if(x==y)return;
if(height[x]==height[y]){
height[x]=height[x]+1;
pre[y]=x;
}else{
if(height[x]<height[y]) pre[x]=y;
else{
pre[y]=x;
}
}
} struct edge{
int u,v,w;
bool operator <(const edge& a)const{
return w<a.w;
}
};
int main(){
int n,m;
while(~scanf("%d%d",&n,&m)){
init_set(n);
edge* edges = new edge[m+1];
bool *record=new bool[m+1];
// memset(record,false,sizeof(record));
for (int i = 1; i <=m; i++){
record[i]=false;
scanf("%d%d%d",&edges[i].u,&edges[i].v,&edges[i].w);
}
sort(edges+1,edges+m+1);
int maxcable=edges[0].w,sums=0,num=0;
int u,v;
for (int i = 1; i <=m; i++){
u=edges[i].u;
v=edges[i].v;
if(find_set(u)!=find_set(v)){
union_set(u,v);
num++;
record[i]=true;
}
if(num>=n-1){
maxcable=edges[i].w;
break;
}
}
cout<<maxcable<<endl;
cout<<n-1<<endl;
for (int i = 1; i<=m; i++){
if(record[i]){
cout<<edges[i].u<<" "<<edges[i].v<<endl;
}
}
}
}

POJ1861 Network (Kruskal算法 +并查集)的更多相关文章

  1. 最小生成树(Minimum Spanning Tree)——Prim算法与Kruskal算法+并查集

    最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题.我们首先用通俗的语言解释它的定义: 对于有n个节点的有权无向连通图,寻 ...

  2. 模板——最小生成树kruskal算法+并查集数据结构

    并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...

  3. 图论 Kruskal算法 并查集

    #include<iostream> #include<cstring> #include<string> #include<cstdio> #incl ...

  4. poj1251 Jungle Roads Kruskal算法+并查集

    时限: 1000MS   内存限制: 10000K 提交总数: 37001   接受: 17398 描述 热带岛屿拉格里山的首长有个问题.几年前,大量的外援花在了村庄之间的额外道路上.但是丛林不断地超 ...

  5. 货车运输-洛谷-1967-LCA+最大生成树(kruskal(并查集))

    传送门 一道:LCA+最大生成树 个人认为把这两个的板子写好(并熟练掌握了之后)就没什么难的 (但我还是de了好久bug)qwq 最大生成树:其实就是最小生成树的变形 我用的是kruskal (个人觉 ...

  6. BZOJ 2342: [Shoi2011]双倍回文 马拉车算法/并查集

    2342: [Shoi2011]双倍回文 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1123  Solved: 408 题目连接 http://w ...

  7. 近期公共祖先(LCA)——离线Tarjan算法+并查集优化

    一. 离线Tarjan算法 LCA问题(lowest common ancestors):在一个有根树T中.两个节点和 e&sig=3136f1d5fcf75709d9ac882bd8cfe0 ...

  8. POJ 1861 Network (Kruskal算法+输出的最小生成树里最长的边==最后加入生成树的边权 *【模板】)

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14021   Accepted: 5484   Specia ...

  9. UVALive 3027 Corporative Network 带权并查集

                         Corporative Network A very big corporation is developing its corporative networ ...

随机推荐

  1. [JAVA]关于excel的jxl包的操作-创建sheet

    前言 最近玩的游戏需要记录数据, 手打excel太麻烦了 于是就学了学java的jxl操作.本来记录在有道云笔记就可以的,由于乐于分享的精神 就在博客园造了个号, 之前自己本来有做个人的网站的,奈何网 ...

  2. 算法竞赛中的常用JAVA API :大数类(转载)

    5.算法竞赛中的常用JAVA API :大数类 摘要 java中的基础数据类型能存储的最大的二进制数是 2 ^ 63 - 1 对应的十进制数是9223372036854775807(long类型的最大 ...

  3. JVM G1GC的算法与实现

    G1GC 是什么? 一些基本概念 实时性 G1GC 有什么特点? G1GC 的堆结构是什么样的? G1GC 的执行过程是什么样的? 并发标记 并发标记是什么 标记位图 执行步骤 步骤 1--初始标记阶 ...

  4. CF上部分树形DP练习题

    本次 5 道题均来自Codeforce 关于树形DP的算法讲解:Here 791D. Bear and Tree Jumps 如果小熊每次能跳跃的距离为1,那么问题变为求树上任意两点之间距离之和. 对 ...

  5. 008 PHY(Physical Layer,PHY)

    一.PHY PHY((Physical Layer,PHY))是IEEE802.3中定义的一个标准模块,STA(station management entity,管理实体,一般为MAC或CPU)通过 ...

  6. MeteoInfo-Java解析与绘图教程(三)

    MeteoInfo-Java解析与绘图教程(三) 上文我们说到简单绘制色斑图(卫星云图),但那种效果可定不符合要求,一般来说,客户需要的是在地图上色斑图的叠加,或者是将图片导出分别是这两种效果 当然还 ...

  7. C#设计模式---迭代器模式(Iterator Pattern)

    一.目的 提供一种方法访问一个容器对象中各个元素,而又不需暴露该对象的内部细节. 二.定义 迭代器模式提供了一种方法访问一个聚合对象(理解为集合对象)中各个元素,而又无需暴露该对象的内部表示,这样既可 ...

  8. Java全栈方向学习路线

    前端方向 前端基础 HTML --> https://www.w3school.com.cn/html/index.asp CSS --> https://www.w3school.com ...

  9. n, n+1, ..., 2n 中的 5 数环初探

    本篇是 IMO 2021 第一题题解及相关拓展问题分析 和 IMO 2021 第 1 题拓展问题的两个极值的编程求解 的延伸篇. 从上两篇的分析,可知: 当 n < 48 时,n, n+1, . ...

  10. system的使用

    <stdio.h>       std是一个标准库,i =input   o =output      标准输入输出库    .h头文件   system的使用   功能:在已经运行的程序 ...