Network

Description

Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each worker of the company must have access to the whole network, each hub must be accessible by cables from any other hub (with possibly some intermediate hubs). 
Since cables of different types are available and shorter ones are cheaper, it is necessary to make such a plan of hub connection, that the maximum length of a single cable is minimal. There is another problem — not each hub can be connected to any other one because of compatibility problems and building geometry limitations. Of course, Andrew will provide you all necessary information about possible hub connections. 
You are to help Andrew to find the way to connect hubs so that all above conditions are satisfied. 

Input

The first line of the input contains two integer numbers: N - the number of hubs in the network (2 <= N <= 1000) and M - the number of possible hub connections (1 <= M <= 15000). All hubs are numbered from 1 to N. The following M lines contain information about possible connections - the numbers of two hubs, which can be connected and the cable length required to connect them. Length is a positive integer number that does not exceed 106. There will be no more than one way to connect two hubs. A hub cannot be connected to itself. There will always be at least one way to connect all hubs.

Output

Output first the maximum length of a single cable in your hub connection plan (the value you should minimize). Then output your plan: first output P - the number of cables used, then output P pairs of integer numbers - numbers of hubs connected by the corresponding cable. Separate numbers by spaces and/or line breaks.

Sample Input

4 6
1 2 1
1 3 1
1 4 2
2 3 1
3 4 1
2 4 1

Sample Output

1
3
1 2
1 3
3 4

题解:原题目数据输出有问题,该题就是典型的Krusal算法,这里使用并查集判断有没有环形成。

#include <iostream>
#include<algorithm>
#include<stdio.h>
#include<cstring>
using namespace std;
typedef long long ll;
const int maxn=20000;
int pre[maxn],height[maxn];
void init_set(int n){
for (int i = 1; i <= n; i++){
pre[i]=i;
}
memset(height,0,sizeof(height));
} int find_set(int x){
return x==pre[x]?x:pre[x]=find_set(pre[x]);
}
void union_set(int x,int y){
x= find_set(x);
y= find_set(y);
if(x==y)return;
if(height[x]==height[y]){
height[x]=height[x]+1;
pre[y]=x;
}else{
if(height[x]<height[y]) pre[x]=y;
else{
pre[y]=x;
}
}
} struct edge{
int u,v,w;
bool operator <(const edge& a)const{
return w<a.w;
}
};
int main(){
int n,m;
while(~scanf("%d%d",&n,&m)){
init_set(n);
edge* edges = new edge[m+1];
bool *record=new bool[m+1];
// memset(record,false,sizeof(record));
for (int i = 1; i <=m; i++){
record[i]=false;
scanf("%d%d%d",&edges[i].u,&edges[i].v,&edges[i].w);
}
sort(edges+1,edges+m+1);
int maxcable=edges[0].w,sums=0,num=0;
int u,v;
for (int i = 1; i <=m; i++){
u=edges[i].u;
v=edges[i].v;
if(find_set(u)!=find_set(v)){
union_set(u,v);
num++;
record[i]=true;
}
if(num>=n-1){
maxcable=edges[i].w;
break;
}
}
cout<<maxcable<<endl;
cout<<n-1<<endl;
for (int i = 1; i<=m; i++){
if(record[i]){
cout<<edges[i].u<<" "<<edges[i].v<<endl;
}
}
}
}

POJ1861 Network (Kruskal算法 +并查集)的更多相关文章

  1. 最小生成树(Minimum Spanning Tree)——Prim算法与Kruskal算法+并查集

    最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题.我们首先用通俗的语言解释它的定义: 对于有n个节点的有权无向连通图,寻 ...

  2. 模板——最小生成树kruskal算法+并查集数据结构

    并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...

  3. 图论 Kruskal算法 并查集

    #include<iostream> #include<cstring> #include<string> #include<cstdio> #incl ...

  4. poj1251 Jungle Roads Kruskal算法+并查集

    时限: 1000MS   内存限制: 10000K 提交总数: 37001   接受: 17398 描述 热带岛屿拉格里山的首长有个问题.几年前,大量的外援花在了村庄之间的额外道路上.但是丛林不断地超 ...

  5. 货车运输-洛谷-1967-LCA+最大生成树(kruskal(并查集))

    传送门 一道:LCA+最大生成树 个人认为把这两个的板子写好(并熟练掌握了之后)就没什么难的 (但我还是de了好久bug)qwq 最大生成树:其实就是最小生成树的变形 我用的是kruskal (个人觉 ...

  6. BZOJ 2342: [Shoi2011]双倍回文 马拉车算法/并查集

    2342: [Shoi2011]双倍回文 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1123  Solved: 408 题目连接 http://w ...

  7. 近期公共祖先(LCA)——离线Tarjan算法+并查集优化

    一. 离线Tarjan算法 LCA问题(lowest common ancestors):在一个有根树T中.两个节点和 e&sig=3136f1d5fcf75709d9ac882bd8cfe0 ...

  8. POJ 1861 Network (Kruskal算法+输出的最小生成树里最长的边==最后加入生成树的边权 *【模板】)

    Network Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 14021   Accepted: 5484   Specia ...

  9. UVALive 3027 Corporative Network 带权并查集

                         Corporative Network A very big corporation is developing its corporative networ ...

随机推荐

  1. python 将Mnist数据集转为jpg,并按比例/标签拆分为多个子数据集

    现有条件:Mnist数据集,下载地址:跳转 下载后的四个.gz文件解压后放到同一个文件夹下,如:/raw Step 1:将Mnist数据集转为jpg图片(代码来自这篇博客) 1 import os 2 ...

  2. Anaconda创建虚拟环境并使用Jupyter-notebook打开虚拟环境

    由于需要使用Tensorflow的1.xx的低版本,但是cmd下载一直报错没有解决,就想着用Anaconda,但是真实环境我已经装上Tensorflow2.0了不想换了,所以就想着再建一个python ...

  3. Linux命令(七)之上传/共享/挂载文件至Linux系统中

    .personSunflowerP { background: rgba(51, 153, 0, 0.66); border-bottom: 1px solid rgba(0, 102, 0, 1); ...

  4. uname指令

    以下是一台Solaris 10服务器的配置信息, bash-3.00$ uname -a SunOS NOP2-HWXX 5.10 Generic_138888-03 sun4u sparc SUNW ...

  5. FIFO 深度了解

    嘻哈第二篇,深度聊聊各种细节. 优化与跨时钟阈分析

  6. Git-04-本地仓库撤销修改

    编辑修改了文件,但是还没有git add之前 直接用 git checkout -- filename 这个命令就可以了 已经 git add 了,但是没有 git commit 之前 1 模拟git ...

  7. Git-03-工作区和暂存区

    工作区和暂存区的概念 工作区 工作区:就是电脑里能看到的目录,如现在学习的目录github 暂存区 版本库:工作区内有一个隐藏目录 .git,这个叫做版本库 git版本库中有一个重要的区叫做暂存区(i ...

  8. 【大咖直播】Elastic Security 安全管理实战工作坊

    本次实战课程,旨在用 Elastic Security 来武装每一位安全运维人员,从容预防.检测和应对网络威胁.这款免费开放的解决方案提供了 SIEM.端点安全.威胁狩猎.云监控.恶意软件保护等功能. ...

  9. ad 差分布线 等长布线

    差分要素: 1.原理图差分对名字后缀必须是 _n _p 2.规则改动 定义差分线宽和间距

  10. Linux修改Ip简单知识了解

    1. 在终端输入:vim /etc/sysconfig/network-scripts/ifcfg-etho(etho是指的安装centos的产生的网卡) 2.按i开始编辑,填写ip地址.子网掩码.网 ...