POJ3070矩阵快速幂简单题
题意:
求斐波那契后四位,n <= 1,000,000,000.
思路:
简单矩阵快速幂,好久没刷矩阵题了,先找个最简单的练练手,总结下矩阵推理过程,其实比较简单,关键是能把问题转换成矩阵的题目,也就是转换成简单加减地推式,下面说下怎么样根据递推式构造矩阵把,这个不难,我的习惯是在中间插矩阵,就是比如斐波那契
a[n] = a[n-1] + a[n-2];
我的习惯是这样,首先要知道这个式子是有连续的两个项就可以推出第三个项
那么
a1 a2 0 1 a2 a3 这样就直接出来了中间矩阵,然后快速幂处理,这个是
1 1 最简单的了,一般都是要想办法各种转换,然后在构造式子
然后在快速幂,还有注意,矩阵可以把最下面那个循环拿到上面
然后通过if(mat[i][k])来优化,我下面的用了,这个要看0出现 的多不多(比较重要),还有可以通过调换循环位置(这个是底 层优化,不在算法范围之内)优化,推荐一个好题,杭电上有个 叫 什么什么233的那个,记得当时做那个题做的比较爽。
#include<stdio.h>
#include<string.h>
#define MOD 10000
typedef struct
{
int mat[3][3];
}M;
M matM(M a ,M b)
{
M c;
memset(c.mat ,0 ,sizeof(c.mat));
for(int k = 1 ;k <= 2 ;k ++)
for(int i = 1 ;i <= 2 ;i ++)
if(a.mat[i][k])
for(int j = 1 ;j <= 2 ;j ++)
c.mat[i][j] = (c.mat[i][j] + a.mat[i][k] * b.mat[k][j]) % MOD;
return c;
}
M qPowMat(M a ,int b)
{
M c;
memset(c.mat ,0 ,sizeof(c.mat));
for(int i = 1 ;i <= 2 ;i ++)
c.mat[i][i] = 1;
while(b)
{
if(b&1) c = matM(c ,a);
a = matM(a ,a);
b >>= 1;
}
return c;
}
int main ()
{
int n ,i;
M star ,ans;
star.mat[1][1] = 0;
star.mat[1][2] = star.mat[2][1] = star.mat[2][2] = 1;
while(~scanf("%d" ,&n) && n != -1)
{
if(n == 0)
{
printf("0\n");
continue;
}
if(n == 1)
{
printf("1\n");
continue;
}
ans = qPowMat(star ,n);
printf("%d\n" ,(0 * ans.mat[1][1] + 1 * ans.mat[2][1]) % MOD);
}
return 0;
}
POJ3070矩阵快速幂简单题的更多相关文章
- luoguP3390(矩阵快速幂模板题)
链接:https://www.luogu.org/problemnew/show/P3390 题意:矩阵快速幂模板题,思路和快速幂一致,只需提供矩阵的乘法即可. AC代码: #include<c ...
- POJ3070 斐波那契数列递推 矩阵快速幂模板题
题目分析: 对于给出的n,求出斐波那契数列第n项的最后4为数,当n很大的时候,普通的递推会超时,这里介绍用矩阵快速幂解决当递推次数很大时的结果,这里矩阵已经给出,直接计算即可 #include< ...
- 解题报告:poj 3070 - 矩阵快速幂简单应用
2017-09-13 19:22:01 writer:pprp 题意很简单,就是通过矩阵快速幂进行运算,得到斐波那契数列靠后的位数 . 这是原理,实现部分就是矩阵的快速幂,也就是二分来做 矩阵快速幂可 ...
- HDU 1575 矩阵快速幂裸题
题意:中文题 我就不说了吧,... 思路:矩阵快速幂 // by SiriusRen #include <cstdio> #include <cstring> using na ...
- POJ_Fibonacci POJ_3070(矩阵快速幂入门题,附上自己写的矩阵模板)
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10521 Accepted: 7477 Descri ...
- Final Destination II -- 矩阵快速幂模板题
求f[n]=f[n-1]+f[n-2]+f[n-3] 我们知道 f[n] f[n-1] f[n-2] f[n-1] f[n-2] f[n-3] 1 1 ...
- hdu 1575 求一个矩阵的k次幂 再求迹 (矩阵快速幂模板题)
Problem DescriptionA为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973. Input数据的第一行是一个T,表示有T组数据.每组数据的第一行有 ...
- poj3070矩阵快速幂求斐波那契数列
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13172 Accepted: 9368 Desc ...
- POJ3070 矩阵快速幂模板
题目:http://poj.org/problem?id=3070 矩阵快速幂模板.mod写到乘法的定义部分就行了. 别忘了 I ( ) 和 i n i t ( ) 要传引用! #include< ...
随机推荐
- 分布式session实现方式
一.背景 在搭建完集群环境后,不得不考虑的一个问题就是用户访问产生的session如何处理. 如果不做任何处理的话,用户将出现频繁登录的现象,比如集群中存在A.B两台服务器,用户在第一次访问网站时,N ...
- 【odoo14】第四章、应用模型
由于本章有包含很多基础知识,个人不会全部转化为自己的语言.直接机器翻译了(用斜体标注,机器翻译反而一字不落,我会过滤掉冗余的内容),虽然机翻,但会保证意思不会偏. 本章主要章节如下: 定义模型展示及顺 ...
- apk、dex完整性验证
对Dex进行完整性的检查,可通过CRC,或者Hash值.可将校验值放到String资源文件里,或者放到服务器中. 1. 在代码中完成校验值对比逻辑,此部分代码后续不能再改变,否则CRC值会发生变化: ...
- c语言跨文件调用函数中声明的变量
转载:weixin_33885253 变量的作用域 变量根据其作用域有全局变量和局部变量之分.全局变量作用域是整个文件,并且可以使用关键字extern达到跨文件调用的目的.但是局部变量值作用于它当前所 ...
- Lombok 常用注解总结
本文转载自知乎专栏 极乐科技.有所整理. 主要注解 @Data @Setter @Getter @Log4j @AllArgsConstructor @NoArgsConstructor @Equal ...
- JVM之调优及常见场景分析
JVM调优 GC调优是最后要做的工作,GC调优的目的可以总结为下面两点: 减少对象晋升到老年代的数量 减少FullGC的执行时间 通过监控排查问题及验证优化结果,可以分为: 命令监控:jps.jinf ...
- python学习8 文件的操作
本文拷贝了on testing 的<python之文件操作:文件的读写>,只做学习之用 python的文件读写通过 一.用open函数 二.对文件读写操作 三.读取文件位置定位 1. op ...
- Android Studio 之 通过 Intent 完成点击按钮实现页面跳转
•Intent 简介 Intent 是 Android 程序中各组件之间进行交互的一种重要方式: 它不仅可以指明当前组件想要执行的动作,还可以在不同组件之间传递数据. Intent 有多个构造函数,其 ...
- Java自定义 sort 排序方法
Sort用法 •结构 1 package Test; 2 3 import java.util.Arrays; 4 import java.util.Random; 5 import java.uti ...
- DAOS 分布式异步对象存储|存储模型
概述 DAOS Pool 是分布在 Target 集合上的存储资源预留.分配给每个 Target 上的 Pool 的实际空间称为 Pool Shard. 分配给 Pool 的总空间在创建时确定,后期可 ...