Codeforces Round #750 (Div. 2)

A. Luntik and Concerts

思路分析:

  • 首先我们可以肯定的是a,b,c都大于等于1,所以我们先让它们自己抵消自己,最后a,c只有三种情况。
  • a = 1, c = 1 如果只有奇数个b,我们取一个b * 2 + a抵消c,否则就拿两个b放到一个数组,另外一个放1个a,1个c。
  • a = 0, c = 1 不能抵消。
  • a = 0, c = 0 如果是偶数个b,那么我们把b分成两份,否则,我们就先取出一个b和一对a,c抵消,剩下的就和a = 1, c = 1,b为偶数一样了。

代码

#include <bits/stdc++.h>
using namespace std;
#define ll long long
signed main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
ll t;
cin >> t;
while (t--)
{
ll a, b, c;
cin >> a >> b >> c;
a %= 2;
c %= 2;
if (a == 0 && c == 0 || (a == 1 && c == 1))
{
cout << 0 << endl;
}
else
cout << 1 << endl;
}
return 0;
}

B. Luntik and Subsequences

思路分析:

  • 考虑1和0这两个元素,如果有n个0的话我们对于每个0都有选与不选,所以答案就是\(2^n\),如果有m个1的话我们至少要选一个1,答案就是\(C_m^1\),乘法即可。

代码

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn = 100;
int a[maxn];
map<ll, ll> cnt;
ll qpow(ll a, ll b)
{
ll ans = 1;
while (b)
{
if (b & 1)
ans = ans * a;
a = a * a;
b >>= 1;
}
return ans;
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int t;
cin >> t;
while (t--)
{
cnt.clear();
long long sum = 0;
int n;
cin >> n;
for (int i = 1; i <= n; i++)
{
cin >> a[i];
sum += a[i];
cnt[a[i]]++;
}
cout << cnt[1] * qpow(2ll, cnt[0]) << endl;
}
return 0;
}

C. Grandma Capa Knits a Scarf

思路分析:

  • 首先我们肯定的是要删去的字符肯定是首次出现的不对称的两个字符(如果是其他的那么在第一个位置就不对称了)。
  • 然后就是如何求删除次数,我在这里采用的是双指针做法,一个在最左段,一个在最右段,如果相等,那么就指针移动,否则就删去和当前字符一样的字符,如果两端都不是当前字符,那么不可能回文,注意删去之后指针的移动即可。

代码

#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 10;
char s[maxn];
int main()
{
int t;
cin >> t;
while (t--)
{
int n;
scanf("%d", &n);
scanf("%s", s + 1);
int ans = 0x3f3f3f3f;
int l = 1, r = n;
char ch[3];
int cnt = 0;
while (l < r)
{
if (s[l] == s[r])
{
l++;
r--;
}
else
{
ch[++cnt] = s[l];
ch[++cnt] = s[r];
break;
}
}
for (int i = 1; i <= 2; i++)
{
char c = ch[i];
int l = 1, r = n;
bool flag = 1;
int cnt = 0;
while (l < r)
{
if (s[l] == s[r])
{
l++;
r--;
}
else if (s[l] == c)
{
l++;
cnt++;
}
else if (s[r] == c)
{
r--;
cnt++;
}
else
{
flag = 0;
break;
}
}
if (flag)
{
ans = min(ans, cnt);
}
}
if (ans == 0x3f3f3f3f)
cout << -1 << endl;
else
cout << ans << endl;
}
return 0;
}

D. Vupsen, Pupsen and 0

思路分析:

  • 题目要求的是\(\sum_{i = 1}^n{a_i\times b_i} = 0\),我们可以这样想,我们把两个数两两匹配例如:\(a_i = 5, a_{i+1} = 4\) 我们就可以令\(b_i = 4, b_{i+1} = -5\),依次类推。
  • 那么每次都能两两匹配的话\(n\)必须是偶数,所以还要讨论\(n\)为奇数的时候,我们可以直接把前三项取出来,让这三项相加为\(0\),那么就有三种情况。

代码

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn = 1e5 + 10;
ll a[maxn];
ll sum;
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int t;
cin >> t;
while (t--)
{
sum = 0;
ll n;
cin >> n;
for (int i = 1; i <= n; i++)
{
cin >> a[i];
sum += a[i];
}
if (n % 2 == 0)
{
for (int i = 1; i <= n; i += 2)
{
cout << a[i + 1] << ' ' << -a[i] << ' ';
}
cout << endl;
}
else if (n % 2 == 1)
{
//不可能三项加起来都为0,所以保证了有答案
//推一下就好了
if (a[3] + a[1] != 0)
cout << a[2] << ' ' << -(a[3] + a[1]) << ' ' << a[2] << ' ';
else if (a[1] + a[2] != 0)
{
cout << a[3] << ' ' << a[3] << ' ' << -(a[2] + a[1]) << ' ';
}
else if (a[3] + a[2] != 0)
{
cout << -(a[2] + a[3]) << ' ' << a[1] << ' ' << a[1] << ' ';
}
for (int i = 4; i <= n; i += 2)
{
cout << a[i + 1] << ' ' << -a[i] << ' ';
}
cout << endl;
}
}
return 0;
}

F1. Korney Korneevich and XOR (easy version)

思路分析:

  • 考虑dp,dp[i]表示得到i这个数的子序列最后一位(递增子序列)的最小值,具体细节看代码注释。

代码

#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 10;
int dp[1001];
int a[maxn];
int main()
{
int n;
cin >> n;
for (int i = 1; i <= n; i++)
{
cin >> a[i];
}
memset(dp, 0x3f3f3f3f, sizeof(dp));
//先让dp[i]默认为最大
dp[0] = 0;
//dp[0] = 0;
for (int i = 1; i <= n; i++)
{
for (int j = 1000; j >= 0; j--)
{
//更新一下子序列最后一位的最小值
if (dp[j] < a[i])
{
dp[j ^ a[i]] = min(dp[j ^ a[i]], a[i]);
}
//只要子序列最后一位的最小值小于当前这个数就可以状态转移,因为保证子序列是递增的。
}
}
int cnt = 0;
for (int i = 0; i <= 1000; i++)
{
if (dp[i] != 0x3f3f3f3f)
cnt++;
}
cout << cnt << endl;
for (int i = 0; i <= 1000; i++)
{
if (dp[i] != 0x3f3f3f3f)
cout << i << ' ';
}
cout << endl;
return 0;
}

F2. Korney Korneevich and XOR (hard version)

思路分析:

  • 如果这题和上题一样的做法的话会T掉,所以要想一下另外一个算法。
  • 这里的dp值其实就是得到的异或值中的子序列中最后一个值的最先出现的位置。
  • 如果能加入到这个子序列的话,那么这个数必须要是在这个子序列中最后一个值出现的位置之后而且值小于它。

代码

#include <bits/stdc++.h>
using namespace std;
const int maxn = 1 << 13;
int f[maxn];
const int N = 1e6 + 7;
int main()
{
int n;
cin >> n;
vector<int> a(n + 1), g[5005];
for (int i = 1; i <= n; i++)
{
cin >> a[i];
g[a[i]].emplace_back(i);
}
for (int i = 1; i < maxn; i++)
{
f[i] = N;
}
for (int i = 1; i <= 5000; i++)
{
for (int j = 0; j < maxn; j++)
{
auto pos = upper_bound(g[i].begin(), g[i].end(), f[j]);
if (pos != g[i].end())
{
f[i ^ j] = min((*pos), f[i ^ j]);
}
}
}
vector<int> ans;
for (int i = 0; i < maxn; ++i)
if (f[i] != N)
ans.emplace_back(i);
cout << ans.size() << '\n';
for (auto i : ans)
cout << i << ' ';
return 0;
}

Codeforces Round #750 (Div. 2)的更多相关文章

  1. Codeforces Round #750 (Div. 2) E. Pchelyonok and Segments

    传送门 题目大意: 给一个序列,可以在这个序列中从左至右选若干个段,第i段的长度为i,对于任意的段i,段内元素和S[i]<S[i+1],求在该序列中最多可以选出几段. 思路:设dp[i][j]为 ...

  2. Codeforces Round #366 (Div. 2) ABC

    Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...

  3. Codeforces Round #354 (Div. 2) ABCD

    Codeforces Round #354 (Div. 2) Problems     # Name     A Nicholas and Permutation standard input/out ...

  4. Codeforces Round #368 (Div. 2)

    直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...

  5. cf之路,1,Codeforces Round #345 (Div. 2)

     cf之路,1,Codeforces Round #345 (Div. 2) ps:昨天第一次参加cf比赛,比赛之前为了熟悉下cf比赛题目的难度.所以做了round#345连试试水的深浅.....   ...

  6. Codeforces Round #279 (Div. 2) ABCDE

    Codeforces Round #279 (Div. 2) 做得我都变绿了! Problems     # Name     A Team Olympiad standard input/outpu ...

  7. Codeforces Round #262 (Div. 2) 1003

    Codeforces Round #262 (Div. 2) 1003 C. Present time limit per test 2 seconds memory limit per test 2 ...

  8. Codeforces Round #262 (Div. 2) 1004

    Codeforces Round #262 (Div. 2) 1004 D. Little Victor and Set time limit per test 1 second memory lim ...

  9. Codeforces Round #371 (Div. 1)

    A: 题目大意: 在一个multiset中要求支持3种操作: 1.增加一个数 2.删去一个数 3.给出一个01序列,问multiset中有多少这样的数,把它的十进制表示中的奇数改成1,偶数改成0后和给 ...

随机推荐

  1. 未能找到源类型“DbSet<T>”的查询模式的实现。未找到“Select”

    使用EF6.0的模型优先模式进行开发,遇到了报错,如下图 后来发现是没引用using System.Linq; 引用后就不报错了

  2. www迁移

    www迁移主要就是2部分: 1)官网页面架构,即 ./drupal/index.php 2)官网图片,即 ./drupal/assets/ 目录下的文件 1. 在ubuntu上搭建基础v1.0环境 2 ...

  3. Git:为Git Bash.exe设置默认起始目录的两种方式(start in、~/.bashrc)

    在协作开发的过程中,我们经常要进行一些项目的上传拉取操作. 在无数次不厌其烦的打开关闭 Git Bash 后,我实在忍受不了作为一个程序员还要每次都要进行如下的小白操作了 cd /d/my-proje ...

  4. python 直接插入排序

    # 先将未排序的元素放到九天之上,一个临时变量temp,上到九天之上去观察前面已经排好的序列, # 然后从后向前对比,只要临时变量小于某个位置的值,就将其向前移动一位,就是给比它下标大 # 1的位置处 ...

  5. C#动态构建表达式树(三)——表达式的组合

    C#动态构建表达式树(三)--表达式的组合 前言 在筛选数据的过程中,可能会有这样的情况:有一些查询条件是公共的,但是根据具体的传入参数可能需要再额外增加一个条件.对于这种问题一般有两种方法: a. ...

  6. open failed: EACCES (Permission denied)

    出现背景:调用系统相册进行图片展示,但是没有成功,是空白的,且检查权限无问题 解决方法

  7. POJ题目 1003Hangover(叠放纸牌)

    POJ 1003 叠放纸牌 描述 您可以将多张纸牌悬在桌子上多远?如果您有一张卡,则可以创建一个最大长度为卡长的一半.(我们假设这些卡片必须垂直于桌子.)使用两张卡片,您可以使最上面的卡片悬垂在底部的 ...

  8. 学习PHP中国际化地数字格式处理

    不知道大家有没有了解过,对于数字格式来说,西方国家会以三位为一个进位,使用逗号来分隔.比如,12345678,用标准的格式来表示的话就是 12,345,678 .不过我们中文其实并不会有这样的分隔符, ...

  9. C# 获取动态类中所有的字段

    /// <summary>        /// 动态类 获取字典集合        /// </summary>        /// <typeparam name= ...

  10. Jmeter系列(8)- 参数化:JSON提取器、全局参数化、CSV文件导入

    JSON提取器 同一个响应结果需要提取多个参数进行参数化,下方输入项用分号(;)进行间隔.请求引用时${变量名} 全局参数化 此处全局参数化用的是用户自定义的变量 CSV文件导入