洛谷题面传送门 & Atcoder 题面传送门

由于再过 1h 就是 NOI 笔试了所以题解写得会略有点简略。

考虑差分,记 \(b_i=c_i-c_{fa_i}\),那么根据题意有 \(b_i\le d,i=2,3,4,\cdots,n\),而 \(b_1\) 则没有任何约束条件。而如果我们令某个 \(b_i\) 加 \(1\),其余 \(b_i\) 均不变,那对应到原 \(c\) 序列上的操作效果就是 \(i\) 子树内的 \(c_j\) 加 \(1\),其余 \(c_j\) 不变,因此预处理出 \(i\) 子树大小 \(siz_i\) 以及 \(i\) 子树内所有 \(m_j\) 之和 \(w_i\),问题就转化为:有 \(n\) 类物品,第 \(i\) 类代价为 \(w_i\),价值为 \(siz_i\),第 \(2,3,4,\cdots,n\) 类物品有 \(d\) 个,第 \(1\) 类物品有无限个,求用不超过 \(X\) 的代价买到的物品的最大价值和。

一眼多重背包,不过此题数据范围高达 \(10^9\),直接稳了(指稳 TLE+MLE)。不过考虑一个错误的贪心,将所有物品按性价比 \(\dfrac{w_i}{siz_i}\) 从小到大排序然后贪心地取,每次能多取就多取,不过这个贪心显然是假的,反例随便举。不过这个贪心给了我们一点启发:对于两个满足 \(\dfrac{w_i}{siz_i}<\dfrac{w_j}{siz_j}\) 的物品 \(i,j\),如果目前 \(i\) 还能够再多取 \(siz_j\) 个,并且 \(j\) 目前取的个数多余 \(siz_i\) 个,那么我们完全可以让 \(j\) 少取 \(siz_i\) 个,\(i\) 多取 \(siz_j\) 个,这样肯定比原方案更优,也就是说我们钦定每个物品前 \(n\) 个中取了多少个,钦定完之后肯定就优先取 \(\dfrac{w_i}{siz_i}\) 小的物品更优了。

因此考虑将所有物品先拿 \(\min(n,d)\) 个出来多重背包,即记 \(f_i\) 表示最少需要多少的代价才能够获得 \(i\) 的收益,剩余部分贪心即可,多重背包可以通过二进制分组/单调队列优化,复杂度 \(\mathcal O(n^4\log n)/\mathcal O(n^4)\),本人使用的二进制分组。

const int MAXN=50;
const int MAXV=1.25e5;
const int MAXI=350;
int n,m,d,siz[MAXN+5],ord[MAXN+5];ll w[MAXN+5];
int hd[MAXN+5],to[MAXN+5],nxt[MAXN+5],ec=0;
void adde(int u,int v){to[++ec]=v;nxt[ec]=hd[u];hd[u]=ec;}
void dfs(int x){
siz[x]=1;
for(int e=hd[x];e;e=nxt[e]){
int y=to[e];dfs(y);
siz[x]+=siz[y];w[x]+=w[y];
}
}
bool cmp(int x,int y){return 1ll*w[x]*siz[y]<1ll*w[y]*siz[x];}
ll dp[MAXV+5],W[MAXI+5];
int V[MAXI+5],item_n=0,lim[MAXN+5];
int main(){
scanf("%d%d%d%lld",&n,&m,&d,&w[1]);
for(int i=2,f;i<=n;i++) scanf("%lld%d",&w[i],&f),adde(f,i);
dfs(1);for(int i=1;i<=n;i++) ord[i]=i;sort(ord+1,ord+n+1,cmp);
int mx=0;memset(dp,63,sizeof(dp));dp[0]=0;
for(int i=1;i<=n;i++){
int up=min((ord[i]==1)?0x3f3f3f3f:d,n);
mx+=up*siz[ord[i]];
int k=31-__builtin_clz(up);
for(int j=0;j<k;j++){
W[++item_n]=w[ord[i]]<<j;
V[item_n]=siz[ord[i]]<<j;
} W[++item_n]=w[ord[i]]*(up-(1<<k)+1);
V[item_n]=siz[ord[i]]*(up-(1<<k)+1);
lim[ord[i]]=((ord[i]==1)?0x3f3f3f3f:d)-up;
// printf("%d %d\n",ord[i],lim[ord[i]]);
} int ans=0;
for(int i=1;i<=item_n;i++) for(int j=mx;j>=V[i];j--)
chkmin(dp[j],dp[j-V[i]]+W[i]);
for(int i=0;i<=mx;i++) if(dp[i]<=m){
int lft=m-dp[i],sum=i;//printf("%d %d %d\n",i,lft,sum);
for(int j=1;j<=n;j++){
int can=min((int)(lft/w[ord[j]]),lim[ord[j]]);
// printf("%d\n",can);
sum+=can*siz[ord[j]];lft-=can*w[ord[j]];
} chkmax(ans,sum);
} printf("%d\n",ans);
return 0;
}

Atcoder Regular Contest 096 D - Sweet Alchemy(贪心+多重背包)的更多相关文章

  1. AtCoder Regular Contest 096

    AtCoder Regular Contest 096 C - Many Medians 题意: 有A,B两种匹萨和三种购买方案,买一个A,买一个B,买半个A和半个B,花费分别为a,b,c. 求买X个 ...

  2. [AtCoder Regular Contest 096 E] Everything on It 解题报告 (第二类斯特林数+容斥原理)

    题目链接:https://arc096.contest.atcoder.jp/tasks/arc096_c Time limit : 4sec / Memory limit : 512MB Score ...

  3. Atcoder Regular Contest 096 C - Everything on It(组合数学)

    Atcoder 题面传送门 & 洛谷题面传送门 简单题,由于这场 arc 的 F 是 jxd 作业而我不会做,所以只好来把这场的 E 水掉了. 我们记 \(f(i)\) 为钦定 \(i\) 个 ...

  4. AtCoder Regular Contest 096 D - Static Sushi(线性dp)

    Problem Statement "Teishi-zushi", a Japanese restaurant, is a plain restaurant with only o ...

  5. AtCoder Regular Contest 098

    AtCoder Regular Contest 098 C - Attention 题意 给定一个只包含"E","W"字符串,可以花一的花费使他们互相转换.选定 ...

  6. AtCoder Regular Contest 061

    AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...

  7. AtCoder Regular Contest 094 (ARC094) CDE题解

    原文链接http://www.cnblogs.com/zhouzhendong/p/8735114.html $AtCoder\ Regular\ Contest\ 094(ARC094)\ CDE$ ...

  8. AtCoder Regular Contest 092

    AtCoder Regular Contest 092 C - 2D Plane 2N Points 题意: 二维平面上给了\(2N\)个点,其中\(N\)个是\(A\)类点,\(N\)个是\(B\) ...

  9. AtCoder Regular Contest 093

    AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...

随机推荐

  1. 使用寄存器点亮LED——2

    1. 项目:使用stm32寄存器点亮LED, 分别点亮红.绿.蓝3个灯. 2. 步骤 先新建个文件夹保存项目 再新建项目 将startup_stm32f10x_hd.s拷贝到该文件夹下 新建main. ...

  2. nsq - 一条消息的生命周期(一)

    经过前面几篇的学习,相信大家对nsq已经有了一个大概的了解,我在写这篇文章的时候也看了很多其他人写的教程,发现大家对于分析系统每个点写的很不错,但是都很少有整体串起来一起走一遍,所以,我打算分成2-3 ...

  3. RocketMQ源码详解 | Producer篇 · 其二:消息组成、发送链路

    概述 在上一节 RocketMQ源码详解 | Producer篇 · 其一:Start,然后 Send 一条消息 中,我们了解了 Producer 在发送消息的流程.这次我们再来具体下看消息的构成与其 ...

  4. 关于评论区empty。。。

    空荡荡的毫无人烟,博主希望路过的小哥哥/小姐姐(几率较小)留下些什么--

  5. AFO记

    希望永远也不要动笔写这个. 发以自勉

  6. 难搞的C语言指针你搞懂了多少

    C语言指针说难不难但是说容易又是最容易出错的地方,因此不管是你要做什么只要用到C指针你就跳不过,今天咱们就以 十九个例子来给大家简单的分析一下指针的应用,最后会有C语言视频资料提供给大家更加深入的参考 ...

  7. web性能检测工具lighthouse

    About Automated auditing, performance metrics, and best practices for the web. Lighthouse 可以自动检查Web页 ...

  8. best-time-to-buy-and-sell-stock-iii leetcode C++

    Say you have an array for which the i th element is the price of a given stock on day i. Design an a ...

  9. hdu 5185 Equation(分析+DP)

    题意: Gorwin is very interested in equations. Nowadays she gets an equation like thisx1+x2+x3+⋯+xn=n, ...

  10. 使用Magisk+riru实现全局改机

    前言 提到全局改机,我们想到修改的不是修改Android源码就是利用Xposed改机,前者成本太高,后者只能修改Java层的数据不够彻底.magisk是Android平台上功能强大的工具,利用它可以随 ...