Kingma D P, Ba J. Adam: A Method for Stochastic Optimization[J]. arXiv: Learning, 2014.

@article{kingma2014adam:,

title={Adam: A Method for Stochastic Optimization},

author={Kingma, Diederik P and Ba, Jimmy},

journal={arXiv: Learning},

year={2014}}

鼎鼎大名.

主要内容

用\(f(\theta)\)表示目标函数, 随机最优通常需要最小化\(\mathbb{E}(f(\theta))\), 但是因为每一次我们都取的是一个小批次, 故实际上我们处理的是\(f_1(\theta),\ldots, f_T(\theta)\). 用\(g_t=\nabla_{\theta}f_t(\theta)\)表示第\(t\)步对应的梯度.

Adam 方法分别估计梯度\(\mathbb{E}(g_t)\)的一阶矩和二阶矩(Adam: adaptive moment estimation 名字的由来).

算法

注意: 下面的算法中关于向量的运算都是逐项(element-wise)的运算.

选择合适的参数

首先, 分析为什么会有

\[\tag{A.1}
\hat{m}_t \leftarrow m_t / (1-\beta_2^t), \\
\hat{v}_t \leftarrow v_t / (1-\beta_2^t).
\]

可以用归纳法证明

\[\tag{A.2}
m_t = (1-\beta_1) \sum_{i=1}^t \beta_1^{t-i} \cdot g_i \\
v_t = (1-\beta_2) \sum_{i=1}^t \beta_2^{t-i} \cdot g_i^2.
\]

倘若分布稳定: \(\mathbb{E}[g_t]=\mathbb{E}[g],\mathbb{E}[g_t^2]=\mathbb{E}[g^2]\), 则

\[\tag{A.3}
\mathbb{E}[m_t]=\mathbb{E}[g] \cdot(1-\beta_1^t) \\
\mathbb{E}[v_t]= \mathbb{E}[g^2] \cdot (1- \beta_2^t).
\]

这就是为什么会有(A.1)这一步.

Adam提出时的一个很大的应用场景就是dropout(正对梯度是稀疏的情况), 这是往往需要我们取较大的\(\beta_2\)(可理解为抵消随机因素).

既然\(\mathbb{E}[g]/\sqrt{\mathbb{E}[g^2]}\le 1\), 我们可以把步长\(\alpha\)理解为一个信赖域(既然\(|\Delta_t| \frac{<}{\approx} a\)).

另外一个很重要的性质是, 比如函数扩大(或缩小)\(c\)倍\(cf\), 此时梯度相应为\(cg\), 我们所对应的

\[\frac{c \cdot \hat{m}_t}{\sqrt{c^2 \cdot \hat{v}_t}}= \frac{\hat{m}_t}{\sqrt{\hat{v}_t}},
\]

并无变化.

一些别的优化算法

AdaGrad:

\[\theta_{t+1} = \theta_t -\alpha \cdot \frac{1}{\sqrt{\sum_{i=1}^tg_t^2}+\epsilon} g_t.
\]

RMSprop:

\[v_t = \beta_2 v_{t-1} + (1-\beta_2) g_t^2 \\
\theta_{t+1} = \theta_t -\alpha \cdot \frac{1}{\sqrt{v_t+\epsilon}}g_t.
\]

AdaDelta:

\[v_t = \beta_2 v_{t-1} + (1-\beta_2) g_t^2 \\
\theta_{t+1} = \theta_t -\alpha \cdot \frac{\sqrt{m_{t-1}+\epsilon}}{\sqrt{v_t+\epsilon}}g_t \\
m_t = \beta_1 m_{t-1}+(1-\beta_1)[\theta_{t+1}-\theta_t]^2.
\]

注: 均为逐项

AdaMax

本文还提出了另外一种算法





理论

不想谈了, 感觉证明有好多错误.

代码



import numpy as np

class Adam:

    def __init__(self, instance, alpha=0.001, beta1=0.9, beta2=0.999,
epsilon=1e-8, beta_decay=1., alpha_decay=False):
""" the Adam using numpy
:param instance: the theta in paper, should have the grad method to call the grads
and the zero_grad method for clearing the grads
:param alpha: the same as the paper default:0.001
:param beta1: the same as the paper default:0.9
:param beta2: the same as the paper default:0.999
:param epsilon: the same as the paper default:1e-8
:param beta_decay:
:param alpha_decay: default False, if True, we will set alpha = alpha / sqrt(t)
"""
self.instance = instance
self.alpha = alpha
self.beta1 = beta1
self.beta2 = beta2
self.epsilon = epsilon
self.beta_decay = beta_decay
self.alpha_decay = alpha_decay
self.initialize_paras() def initialize_paras(self):
self.m = 0.
self.v = 0.
self.timestep = 0 def update_paras(self):
grads = self.instance.grad
self.beta1 *= self.beta_decay
self.beta2 *= self.beta_decay
self.m = self.beta1 * self.m + (1 - self.beta1) * grads
self.v = self.beta2 * self.v + (1 - self.beta2) * grads ** 2
self.timestep += 1
if self.alpha_decay:
return self.alpha / np.sqrt(self.timestep)
return self.alpha def zero_grad(self):
self.instance.zero_grad() def step(self):
alpha = self.update_paras()
betat1 = 1 - self.beta1 ** self.timestep
betat2 = 1 - self.beta2 ** self.timestep
temp = alpha * np.sqrt(betat2) / betat1
self.instance.parameters -= temp * self.m / (np.sqrt(self.v) + self.epsilon) class PPP: def __init__(self, parameters, grad_func):
self.parameters = parameters
self.zero_grad()
self.grad_func = grad_func def zero_grad(self):
self.grad = np.zeros_like(self.parameters) def calc_grad(self):
self.grad += self.grad_func(self.parameters) def f(x):
return x[0] ** 2 + 5 * x[1] ** 2 def grad(x):
return np.array([2 * x[0], 100 * x[1]]) if __name__ == "__main__": x = np.array([10., 10.])
x = PPP(x, grad)
xs = []
ys = []
optim = Adam(x, alpha=0.4)
for i in range(100):
xs.append(x.parameters.copy())
y = f(x.parameters)
ys.append(y)
optim.zero_grad()
x.calc_grad()
optim.step()
xs = np.array(xs)
ys = np.array(ys)
import matplotlib.pyplot as plt
fig, (ax0, ax1)= plt.subplots(1, 2)
ax0.plot(xs[:, 0], xs[:, 1])
ax0.scatter(xs[:, 0], xs[:, 1])
ax0.set(title="trajectory", xlabel="x", ylabel="y")
ax1.plot(np.arange(len(ys)), ys)
ax1.set(title="loss-iterations", xlabel="iterations", ylabel="loss")
plt.show()

ADAM : A METHOD FOR STOCHASTIC OPTIMIZATION的更多相关文章

  1. Stochastic Optimization Techniques

    Stochastic Optimization Techniques Neural networks are often trained stochastically, i.e. using a me ...

  2. TensorFlow 深度学习笔记 Stochastic Optimization

    Stochastic Optimization 转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到I ...

  3. Stochastic Optimization of PCA with Capped MSG

    目录 Problem Matrix Stochastic Gradient 算法(MSG) 步骤二(单次迭代) 单步SVD \(project()\)算法 \(rounding()\) 从这里回溯到此 ...

  4. (转) An overview of gradient descent optimization algorithms

    An overview of gradient descent optimization algorithms Table of contents: Gradient descent variants ...

  5. PyTorch-Adam优化算法原理,公式,应用

    概念:Adam 是一种可以替代传统随机梯度下降过程的一阶优化算法,它能基于训练数据迭代地更新神经网络权重.Adam 最开始是由 OpenAI 的 Diederik Kingma 和多伦多大学的 Jim ...

  6. An overview of gradient descent optimization algorithms

    原文地址:An overview of gradient descent optimization algorithms An overview of gradient descent optimiz ...

  7. Adam优化算法

    Question? Adam 算法是什么,它为优化深度学习模型带来了哪些优势? Adam 算法的原理机制是怎么样的,它与相关的 AdaGrad 和 RMSProp 方法有什么区别. Adam 算法应该 ...

  8. Adam 算法

    简介 Adam 是一种可以替代传统随机梯度下降(SGD)过程的一阶优化算法,它能基于训练数据迭代地更新神经网络权重.Adam 最开始是由 OpenAI 的 Diederik Kingma 和多伦多大学 ...

  9. 从 SGD 到 Adam —— 深度学习优化算法概览(一) 重点

    https://zhuanlan.zhihu.com/p/32626442 骆梁宸 paper插画师:poster设计师:oral slides制作人 445 人赞同了该文章 楔子 前些日在写计算数学 ...

随机推荐

  1. nit是虱子的卵

    如题.[牛津] (egg of a) louse or other parasitic insect 虱或其他寄生虫(的卵). 忘了在那个帖子里说nit: 虱子了. 为了凑字数,迄今为止六级/考研单词 ...

  2. 容器之分类与各种测试(三)——stack

    stack是栈,其实现也是使用了双端队列(只要不用双端队列的一端,仅用单端数据进出即完成单端队列的功能),由于queue和stack的实现均是使用deque,没有自己的数据结构和算法,所以这俩也被称为 ...

  3. Java事务与JTA

    一.什么是JAVA事务 通俗的理解,事务是一组原子操作单元,从数据库角度说,就是一组SQL指令,要么全部执行成功,若因为某个原因其中一条指令执行有错误,则撤销先前执行过的所有指令.更简答的说就是:要么 ...

  4. vue2 页面路由

    vue官方文档 src/views/Login.vue <template> <div> <h2>登录页</h2> </div> </ ...

  5. JPA和事务管理

    JPA和事务管理 很重要的一点是JPA本身并不提供任何类型的声明式事务管理.如果在依赖注入容器之外使用JPA,事务处理必须由开发人员编程实现. 123456789101112UserTransacti ...

  6. VFL

    VFL 1. 概念 VFL全称是Visual Format Language,翻译过来是"可视化格式语言" VFL是苹果公司为了简化Autolayout的编码而推出的抽象语言 2. ...

  7. 【C/C++】最大连续子序列和/动态规划

    思路主要是看了晴神的算法笔记,实现是自己重新用vector实现了一下,对付逗号隔开的输入 #include <iostream> #include <string> #incl ...

  8. [OpenGL ES 02]OpenGL ES渲染管线与着色器

    [OpenGL ES 02]OpenGL ES渲染管线与着色器 罗朝辉 (http://www.cnblogs.com/kesalin/) 本文遵循"署名-非商业用途-保持一致"创 ...

  9. OpenGL ES2 缩放移动

    OpenGL ES Transformations with Gestures Ricardo Rendon Cepeda on December 10, 2013 Tweet Gestures: I ...

  10. [BUUCTF]PWN——axb_2019_fmt32

    axb_2019_fmt32 附件 步骤: 例行检查,32位程序,开启了nx保护 本地试运行一下程序,看看大概的情况 32位ida载入 alarm(),是闹钟函数,主要功能是设置信号传送闹钟,即用来设 ...