Kingma D P, Ba J. Adam: A Method for Stochastic Optimization[J]. arXiv: Learning, 2014.

@article{kingma2014adam:,

title={Adam: A Method for Stochastic Optimization},

author={Kingma, Diederik P and Ba, Jimmy},

journal={arXiv: Learning},

year={2014}}

鼎鼎大名.

主要内容

用\(f(\theta)\)表示目标函数, 随机最优通常需要最小化\(\mathbb{E}(f(\theta))\), 但是因为每一次我们都取的是一个小批次, 故实际上我们处理的是\(f_1(\theta),\ldots, f_T(\theta)\). 用\(g_t=\nabla_{\theta}f_t(\theta)\)表示第\(t\)步对应的梯度.

Adam 方法分别估计梯度\(\mathbb{E}(g_t)\)的一阶矩和二阶矩(Adam: adaptive moment estimation 名字的由来).

算法

注意: 下面的算法中关于向量的运算都是逐项(element-wise)的运算.

选择合适的参数

首先, 分析为什么会有

\[\tag{A.1}
\hat{m}_t \leftarrow m_t / (1-\beta_2^t), \\
\hat{v}_t \leftarrow v_t / (1-\beta_2^t).
\]

可以用归纳法证明

\[\tag{A.2}
m_t = (1-\beta_1) \sum_{i=1}^t \beta_1^{t-i} \cdot g_i \\
v_t = (1-\beta_2) \sum_{i=1}^t \beta_2^{t-i} \cdot g_i^2.
\]

倘若分布稳定: \(\mathbb{E}[g_t]=\mathbb{E}[g],\mathbb{E}[g_t^2]=\mathbb{E}[g^2]\), 则

\[\tag{A.3}
\mathbb{E}[m_t]=\mathbb{E}[g] \cdot(1-\beta_1^t) \\
\mathbb{E}[v_t]= \mathbb{E}[g^2] \cdot (1- \beta_2^t).
\]

这就是为什么会有(A.1)这一步.

Adam提出时的一个很大的应用场景就是dropout(正对梯度是稀疏的情况), 这是往往需要我们取较大的\(\beta_2\)(可理解为抵消随机因素).

既然\(\mathbb{E}[g]/\sqrt{\mathbb{E}[g^2]}\le 1\), 我们可以把步长\(\alpha\)理解为一个信赖域(既然\(|\Delta_t| \frac{<}{\approx} a\)).

另外一个很重要的性质是, 比如函数扩大(或缩小)\(c\)倍\(cf\), 此时梯度相应为\(cg\), 我们所对应的

\[\frac{c \cdot \hat{m}_t}{\sqrt{c^2 \cdot \hat{v}_t}}= \frac{\hat{m}_t}{\sqrt{\hat{v}_t}},
\]

并无变化.

一些别的优化算法

AdaGrad:

\[\theta_{t+1} = \theta_t -\alpha \cdot \frac{1}{\sqrt{\sum_{i=1}^tg_t^2}+\epsilon} g_t.
\]

RMSprop:

\[v_t = \beta_2 v_{t-1} + (1-\beta_2) g_t^2 \\
\theta_{t+1} = \theta_t -\alpha \cdot \frac{1}{\sqrt{v_t+\epsilon}}g_t.
\]

AdaDelta:

\[v_t = \beta_2 v_{t-1} + (1-\beta_2) g_t^2 \\
\theta_{t+1} = \theta_t -\alpha \cdot \frac{\sqrt{m_{t-1}+\epsilon}}{\sqrt{v_t+\epsilon}}g_t \\
m_t = \beta_1 m_{t-1}+(1-\beta_1)[\theta_{t+1}-\theta_t]^2.
\]

注: 均为逐项

AdaMax

本文还提出了另外一种算法





理论

不想谈了, 感觉证明有好多错误.

代码



import numpy as np

class Adam:

    def __init__(self, instance, alpha=0.001, beta1=0.9, beta2=0.999,
epsilon=1e-8, beta_decay=1., alpha_decay=False):
""" the Adam using numpy
:param instance: the theta in paper, should have the grad method to call the grads
and the zero_grad method for clearing the grads
:param alpha: the same as the paper default:0.001
:param beta1: the same as the paper default:0.9
:param beta2: the same as the paper default:0.999
:param epsilon: the same as the paper default:1e-8
:param beta_decay:
:param alpha_decay: default False, if True, we will set alpha = alpha / sqrt(t)
"""
self.instance = instance
self.alpha = alpha
self.beta1 = beta1
self.beta2 = beta2
self.epsilon = epsilon
self.beta_decay = beta_decay
self.alpha_decay = alpha_decay
self.initialize_paras() def initialize_paras(self):
self.m = 0.
self.v = 0.
self.timestep = 0 def update_paras(self):
grads = self.instance.grad
self.beta1 *= self.beta_decay
self.beta2 *= self.beta_decay
self.m = self.beta1 * self.m + (1 - self.beta1) * grads
self.v = self.beta2 * self.v + (1 - self.beta2) * grads ** 2
self.timestep += 1
if self.alpha_decay:
return self.alpha / np.sqrt(self.timestep)
return self.alpha def zero_grad(self):
self.instance.zero_grad() def step(self):
alpha = self.update_paras()
betat1 = 1 - self.beta1 ** self.timestep
betat2 = 1 - self.beta2 ** self.timestep
temp = alpha * np.sqrt(betat2) / betat1
self.instance.parameters -= temp * self.m / (np.sqrt(self.v) + self.epsilon) class PPP: def __init__(self, parameters, grad_func):
self.parameters = parameters
self.zero_grad()
self.grad_func = grad_func def zero_grad(self):
self.grad = np.zeros_like(self.parameters) def calc_grad(self):
self.grad += self.grad_func(self.parameters) def f(x):
return x[0] ** 2 + 5 * x[1] ** 2 def grad(x):
return np.array([2 * x[0], 100 * x[1]]) if __name__ == "__main__": x = np.array([10., 10.])
x = PPP(x, grad)
xs = []
ys = []
optim = Adam(x, alpha=0.4)
for i in range(100):
xs.append(x.parameters.copy())
y = f(x.parameters)
ys.append(y)
optim.zero_grad()
x.calc_grad()
optim.step()
xs = np.array(xs)
ys = np.array(ys)
import matplotlib.pyplot as plt
fig, (ax0, ax1)= plt.subplots(1, 2)
ax0.plot(xs[:, 0], xs[:, 1])
ax0.scatter(xs[:, 0], xs[:, 1])
ax0.set(title="trajectory", xlabel="x", ylabel="y")
ax1.plot(np.arange(len(ys)), ys)
ax1.set(title="loss-iterations", xlabel="iterations", ylabel="loss")
plt.show()

ADAM : A METHOD FOR STOCHASTIC OPTIMIZATION的更多相关文章

  1. Stochastic Optimization Techniques

    Stochastic Optimization Techniques Neural networks are often trained stochastically, i.e. using a me ...

  2. TensorFlow 深度学习笔记 Stochastic Optimization

    Stochastic Optimization 转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到I ...

  3. Stochastic Optimization of PCA with Capped MSG

    目录 Problem Matrix Stochastic Gradient 算法(MSG) 步骤二(单次迭代) 单步SVD \(project()\)算法 \(rounding()\) 从这里回溯到此 ...

  4. (转) An overview of gradient descent optimization algorithms

    An overview of gradient descent optimization algorithms Table of contents: Gradient descent variants ...

  5. PyTorch-Adam优化算法原理,公式,应用

    概念:Adam 是一种可以替代传统随机梯度下降过程的一阶优化算法,它能基于训练数据迭代地更新神经网络权重.Adam 最开始是由 OpenAI 的 Diederik Kingma 和多伦多大学的 Jim ...

  6. An overview of gradient descent optimization algorithms

    原文地址:An overview of gradient descent optimization algorithms An overview of gradient descent optimiz ...

  7. Adam优化算法

    Question? Adam 算法是什么,它为优化深度学习模型带来了哪些优势? Adam 算法的原理机制是怎么样的,它与相关的 AdaGrad 和 RMSProp 方法有什么区别. Adam 算法应该 ...

  8. Adam 算法

    简介 Adam 是一种可以替代传统随机梯度下降(SGD)过程的一阶优化算法,它能基于训练数据迭代地更新神经网络权重.Adam 最开始是由 OpenAI 的 Diederik Kingma 和多伦多大学 ...

  9. 从 SGD 到 Adam —— 深度学习优化算法概览(一) 重点

    https://zhuanlan.zhihu.com/p/32626442 骆梁宸 paper插画师:poster设计师:oral slides制作人 445 人赞同了该文章 楔子 前些日在写计算数学 ...

随机推荐

  1. day06 HTTP协议

    day06 HTTP协议 HTTP协议 什么是http? HTTP 全称:Hyper Text Transfer Protocol 中文名:超文本传输协议 是一种按照URL指示,将超文本文档从一台主机 ...

  2. day8 基本数据类型之字典

    day8 基本数据类型之字典 一.字典(dict) 1.用途: 2.定义方式:在{}内用逗号分隔开多个元素,每个元素都是key:value的形式,其中value可以使任意类型,而key必须是不可变类型 ...

  3. 重磅丨腾讯云开源业界首个 etcd 一站式治理平台 Kstone

    ​ Kstone 开源 在 CNCF 云原生基金会举办的2021年12月9日 KubeCon China大会上,腾讯云容器 TKE 团队发布了 Kstone etcd 治理平台开源项目. Kstone ...

  4. json模块中函数的用法

    json模块中主要使用四个函数:json.load(),json.dump(),json.loads(),json.dumps() json.loads()是将一个json编码的字符串转换成pytho ...

  5. Oracle中的加解密函数

    对Oracle内部数据的加密,可以简单得使用DBMS_CRYPTO来进行,效果还是不错的,而且使用也比较方便,所以今天专门来学习一下这个包的使用方法.在使用之前,要注意两件事情: 1.DBMS_CRY ...

  6. AI常用环境安装

    torch环境 conda create --name py37 python=3.7 conda activate py37 pip install jieba==0.42.1pip install ...

  7. 【分布式】Zookeeper客户端基本的使用

    与mysql.redis等软件一样,zookeeper的软件包中也提供了客户端程序用于对服务器上的数据进行操作.本节我们就来学习zookeeper客户端的使用方法.不过在详细讲解zk客户端的使用方法之 ...

  8. Enumeration遍历http请求参数的一个例子

    Enumeration<String> paraNames=request.getParameterNames(); for(Enumeration e=paraNames;e.hasMo ...

  9. @NotBlank 注解不生效

    1. @NotBlank 注解是用来校验 String 类型的参数是否为空的 2. 使用方法 (1)Spring-boot 某一个版本之前 spring-boot-starter-web 中有包含 h ...

  10. Windows下搭建FFmpeg开发调试环境

    背景 如果你是一个FFmpeg的使用者,那么绝大部分情况下只需要在你的程序中引用FFmpeg的libav*相关的头文件,然后在编译阶段链接相关的库即可. 但是如果你想调试FFmpeg内部相关的逻辑,或 ...