time limit per test : 1 second
memory limit per test : 256 megabytes
input : standard input
output : standard output

Problem Description

 Polycarp loves geometric progressions very much. Since he was only three years old, he loves only the progressions of length three. He also has a favorite integer \(k\) and a sequence \(a\), consisting of \(n\) integers.

He wants to know how many subsequences of length three can be selected from \(a\), so that they form a geometric progression with common ratio \(k\).

A subsequence of length three is a combination of three such indexes \(i_1, i_2, i_3\), that \(1 ≤ i_1 < i_2 < i_3 ≤ n\). That is, a subsequence of length three are such groups of three elements that are not necessarily consecutive in the sequence, but their indexes are strictly increasing.

A geometric progression with common ratio \(k\) is a sequence of numbers of the form \(b·k^0, b·k^1, ..., b·k^{r - 1}\).Polycarp is only three years old, so he can not calculate this number himself. Help him to do it.

Input

The first line of the input contains two integers, \(n\) and \(k (1 ≤ n, k ≤ 2·10^5)\), showing how many numbers Polycarp's sequence has and his favorite number.

The second line contains \(n\) integers \(a_1, a_2, ..., a_n ( - 10^9 ≤ a_i ≤ 10^9)\) — elements of the sequence.

Output

Output a single number — the number of ways to choose a subsequence of length three, such that it forms a geometric progression with a common ratio \(k\).

Examples

input

5 2
1 1 2 2 4

output

4

input

3 1
1 1 1

output

1

input

10 3
1 2 6 2 3 6 9 18 3 9

output

6

Note

In the first sample test the answer is four, as any of the two 1s can be chosen as the first element, the second element can be any of the 2s, and the third element of the subsequence must be equal to 4.

题意

在\(n\)个数中选出三个数,要求组成的序列公比为\(k\),并且不改变这三个数的前后关系,问有多少种选择方案

思路

\(DP\),因为\(- 10^9 ≤ a_i ≤ 10^9\) ,所以还需要用到\(map\)

定义\(dp[i][j]\)表示把数字\(j\)放在等比数列第\(i\)个位置的方案数

\(dp[i][j]+=dp[i-1][j/k]\)

将所有长度为\(3\)的方案数加起来即可

代码

#include <bits/stdc++.h>
#define ll long long
#define ull unsigned long long
#define ms(a,b) memset(a,b,sizeof(a))
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int maxn=1e6+10;
const int mod=1e9+7;
const int maxm=1e3+10;
using namespace std;
ll a[maxn];
int main(int argc, char const *argv[])
{
#ifndef ONLINE_JUDGE
freopen("/home/wzy/in", "r", stdin);
freopen("/home/wzy/out", "w", stdout);
srand((unsigned int)time(NULL));
#endif
ios::sync_with_stdio(false);
cin.tie(0);
int n,k;
cin>>n>>k;
map<int,ll>dp[4];
ll ans=0;
for(int i=1;i<=n;i++)
{
cin>>a[i];
if(a[i]%k==0)
{
ans+=dp[2][a[i]/k];
dp[2][a[i]]+=dp[1][a[i]/k];
}
dp[1][a[i]]++;
}
cout<<ans<<endl;
#ifndef ONLINE_JUDGE
cerr<<"Time elapsed: "<<1.0*clock()/CLOCKS_PER_SEC<<" s."<<endl;
#endif
return 0;
}

Codeforces 567C:Geometric Progression(DP)的更多相关文章

  1. CodeForces - 24D :Broken robot (DP+三对角矩阵高斯消元 随机)

    pro:给定N*M的矩阵,以及初始玩家位置. 规定玩家每次会等概率的向左走,向右走,向下走,原地不动,问走到最后一行的期望.保留4位小数. sol:可以列出方程,高斯消元即可,发现是三角矩阵,O(N* ...

  2. Codeforces Gym101201B:Buggy Robot(BFS + DP)

    题目链接 题意 给出一个n*m的地图,还有一个操作序列,你原本是要按照序列执行操作的,但是你可以修改操作:删除某些操作或者增加某些操作,问从'R'到'E'最少需要多少次修改操作. 思路 和上次比赛做的 ...

  3. hdu 5429 Geometric Progression(存个大数模板)

    Problem Description Determine whether a sequence is a Geometric progression or not. In mathematics, ...

  4. 习题:烽火传递(DP+单调队列)

    烽火传递[题目描述]烽火台又称烽燧,是重要的防御设施,一般建在险要处或交通要道上.一旦有敌情发生,白天燃烧柴草,通过浓烟表达信息:夜晚燃烧干柴,以火光传递军情.在某两座城市之间有n个烽火台,每个烽火台 ...

  5. Codeforces 567C Geometric Progression(思路)

    题目大概说给一个整数序列,问里面有几个包含三个数字的子序列ai,aj,ak,满足ai*k*k=aj*k=ak. 感觉很多种做法的样子,我想到这么一种: 枚举中间的aj,看它左边有多少个aj/k右边有多 ...

  6. CodeForces 567C Geometric Progression 类似dp的递推统计方案数

    input n,k 1<=n,k<=200000 a1 a2 ... an 1<=ai<=1e9 output 数组中选三个数,且三个数的下标严格递增,凑成形如b,b*k,b* ...

  7. CodeForces - 1073E :Segment Sum (数位DP)

    You are given two integers l l and r r (l≤r l≤r ). Your task is to calculate the sum of numbers from ...

  8. Codeforces Gym100962J:Jimi Hendrix(树型DP)

    http://codeforces.com/gym/100962/attachments 题意:有一个n个节点的字母树,给出n-1条边的信息,代表边上有一个字母,然后给出长度为m的字符串,问是否能在这 ...

  9. Codeforces 189A:Cut Ribbon(完全背包,DP)

    time limit per test : 1 second memory limit per test : 256 megabytes input : standard input output : ...

随机推荐

  1. 02 Windows安装C语言开发工具CodeBlocks

    CodeBlocks安装 使用微信扫码关注微信公众号,并回复:"C语言环境",免费获取下载链接! 1.卸载CodeBlocks(电脑未装此软件,跳过)    进入目录:C:\Pro ...

  2. mybatis项目中,使用useSSL=true却报错

    今天在玩儿mybatis的时候遇到一个蛮有东西的事情:抛了一个让我折腾几个小时的错误,所以记录一下 这个错误有意思的地方就在于这里: 当使用useSSL安全连接时,抛出了上述的错误把useSSL改为f ...

  3. python-3.x- 序列操作

    1. list操作 A.添加元素 1 list = ["C++","C", "Java", "Python"] 2 &q ...

  4. Shell $()、${}、$[]、$(())

    目录 Shell中的 $().${}.$[].$(()) $().${} 替换 ${} 变量内容的替换.删除.取代 数组 $[].$(()) 运算符 Shell中的 $().${}.$[].$(()) ...

  5. BIO/NIO/AIO对比

    IO 模型 就是使用什么样的通道进行数据的发送和接收,很大程度上决定了程序通信的性能. Java 支持三种网络编程模型:BIO.NIO.AIO. Java BIO,同步并阻塞(传统阻塞型),服务器实现 ...

  6. Shell学习(七)——sort、uniq、cut、wc命令详解

    Shell学习(七)--sort.uniq.cut.wc命令详解 转自:[1]linux sort,uniq,cut,wc命令详解 https://www.cnblogs.com/ggjucheng/ ...

  7. entfrm-boot开发平台一览【entfrm开源模块化无代码开发平台】

    介绍 entfrm-boot是一个以模块化为核心的无代码开发平台,能够让中小企业快速从零搭建自己的开发平台:开箱即用,可插拔可自由组合:以模块化的方式,最大化的代码复用,避免重复开发:无代码可视化开发 ...

  8. centos 7 zookeeper 单体和集群搭建

    1.操作相关命令 1.0  安装命令     wget  :下载解压包 tar -xzvf  :解压 1.1  创建节点 create  / node : 创建一个名字为node的 空节点 creat ...

  9. Selenium之Canvas画布操作

    现在有一个场景是需要进入到 Canvas画布中 进行单击操作,现在使用过如下方法 canvas = driver.find_element_by_xpath("//canvas[@id='# ...

  10. 使用jquery完成抽奖图片滚动的效果

    <!DOCTYPE html><html><head> <meta charset="UTF-8"> <title>jq ...