Codeforces 567C:Geometric Progression(DP)
time limit per test : 1 second
memory limit per test : 256 megabytes
input : standard input
output : standard output
Problem Description
Polycarp loves geometric progressions very much. Since he was only three years old, he loves only the progressions of length three. He also has a favorite integer \(k\) and a sequence \(a\), consisting of \(n\) integers.
He wants to know how many subsequences of length three can be selected from \(a\), so that they form a geometric progression with common ratio \(k\).
A subsequence of length three is a combination of three such indexes \(i_1, i_2, i_3\), that \(1 ≤ i_1 < i_2 < i_3 ≤ n\). That is, a subsequence of length three are such groups of three elements that are not necessarily consecutive in the sequence, but their indexes are strictly increasing.
A geometric progression with common ratio \(k\) is a sequence of numbers of the form \(b·k^0, b·k^1, ..., b·k^{r - 1}\).Polycarp is only three years old, so he can not calculate this number himself. Help him to do it.
Input
The first line of the input contains two integers, \(n\) and \(k (1 ≤ n, k ≤ 2·10^5)\), showing how many numbers Polycarp's sequence has and his favorite number.
The second line contains \(n\) integers \(a_1, a_2, ..., a_n ( - 10^9 ≤ a_i ≤ 10^9)\) — elements of the sequence.
Output
Output a single number — the number of ways to choose a subsequence of length three, such that it forms a geometric progression with a common ratio \(k\).
Examples
input
5 2
1 1 2 2 4
output
4
input
3 1
1 1 1
output
1
input
10 3
1 2 6 2 3 6 9 18 3 9
output
6
Note
In the first sample test the answer is four, as any of the two 1s can be chosen as the first element, the second element can be any of the 2s, and the third element of the subsequence must be equal to 4.
题意
在\(n\)个数中选出三个数,要求组成的序列公比为\(k\),并且不改变这三个数的前后关系,问有多少种选择方案
思路
\(DP\),因为\(- 10^9 ≤ a_i ≤ 10^9\) ,所以还需要用到\(map\)
定义\(dp[i][j]\)表示把数字\(j\)放在等比数列第\(i\)个位置的方案数
\(dp[i][j]+=dp[i-1][j/k]\)
将所有长度为\(3\)的方案数加起来即可
代码
#include <bits/stdc++.h>
#define ll long long
#define ull unsigned long long
#define ms(a,b) memset(a,b,sizeof(a))
const int inf=0x3f3f3f3f;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int maxn=1e6+10;
const int mod=1e9+7;
const int maxm=1e3+10;
using namespace std;
ll a[maxn];
int main(int argc, char const *argv[])
{
#ifndef ONLINE_JUDGE
freopen("/home/wzy/in", "r", stdin);
freopen("/home/wzy/out", "w", stdout);
srand((unsigned int)time(NULL));
#endif
ios::sync_with_stdio(false);
cin.tie(0);
int n,k;
cin>>n>>k;
map<int,ll>dp[4];
ll ans=0;
for(int i=1;i<=n;i++)
{
cin>>a[i];
if(a[i]%k==0)
{
ans+=dp[2][a[i]/k];
dp[2][a[i]]+=dp[1][a[i]/k];
}
dp[1][a[i]]++;
}
cout<<ans<<endl;
#ifndef ONLINE_JUDGE
cerr<<"Time elapsed: "<<1.0*clock()/CLOCKS_PER_SEC<<" s."<<endl;
#endif
return 0;
}
Codeforces 567C:Geometric Progression(DP)的更多相关文章
- CodeForces - 24D :Broken robot (DP+三对角矩阵高斯消元 随机)
pro:给定N*M的矩阵,以及初始玩家位置. 规定玩家每次会等概率的向左走,向右走,向下走,原地不动,问走到最后一行的期望.保留4位小数. sol:可以列出方程,高斯消元即可,发现是三角矩阵,O(N* ...
- Codeforces Gym101201B:Buggy Robot(BFS + DP)
题目链接 题意 给出一个n*m的地图,还有一个操作序列,你原本是要按照序列执行操作的,但是你可以修改操作:删除某些操作或者增加某些操作,问从'R'到'E'最少需要多少次修改操作. 思路 和上次比赛做的 ...
- hdu 5429 Geometric Progression(存个大数模板)
Problem Description Determine whether a sequence is a Geometric progression or not. In mathematics, ...
- 习题:烽火传递(DP+单调队列)
烽火传递[题目描述]烽火台又称烽燧,是重要的防御设施,一般建在险要处或交通要道上.一旦有敌情发生,白天燃烧柴草,通过浓烟表达信息:夜晚燃烧干柴,以火光传递军情.在某两座城市之间有n个烽火台,每个烽火台 ...
- Codeforces 567C Geometric Progression(思路)
题目大概说给一个整数序列,问里面有几个包含三个数字的子序列ai,aj,ak,满足ai*k*k=aj*k=ak. 感觉很多种做法的样子,我想到这么一种: 枚举中间的aj,看它左边有多少个aj/k右边有多 ...
- CodeForces 567C Geometric Progression 类似dp的递推统计方案数
input n,k 1<=n,k<=200000 a1 a2 ... an 1<=ai<=1e9 output 数组中选三个数,且三个数的下标严格递增,凑成形如b,b*k,b* ...
- CodeForces - 1073E :Segment Sum (数位DP)
You are given two integers l l and r r (l≤r l≤r ). Your task is to calculate the sum of numbers from ...
- Codeforces Gym100962J:Jimi Hendrix(树型DP)
http://codeforces.com/gym/100962/attachments 题意:有一个n个节点的字母树,给出n-1条边的信息,代表边上有一个字母,然后给出长度为m的字符串,问是否能在这 ...
- Codeforces 189A:Cut Ribbon(完全背包,DP)
time limit per test : 1 second memory limit per test : 256 megabytes input : standard input output : ...
随机推荐
- 巩固javaweb的第二十二天
巩固内容: 使用表单数据 : 要对用户输入的信息进行验证,需要先获取输入信息.每个表单元素都属于一个 form 表单,要获取信息,需要先获取 form,然后访问表单元素的值. 有两种方式可以获取 fo ...
- Fllin(七)【Flink CDC实践】
目录 FlinkCDC 1.简介 2.依赖 3.flink stream api 4.flink sql 5.自定义反序列化器 6.打包测试 FlinkCDC 1.简介 CDC是Change Data ...
- Hadoop 相关知识点(二)
1.HDFS副本机制 Hadoopde 默认副本布局策略是: (1)在运行客户端的节点上放置第一个副本(如果客户端运行在集群之外,就随机选择一个节点,不过系统会避免选择那些存储太满或者太忙的节点): ...
- 移动开发之h5学习大纲
移动开发学习形式:授课.自学 1.html5 css3 htm5shiv.js response.js 2.流式布局 自适应布局 盒模型 弹性盒模型 响应式布局3.iscroll swiper boo ...
- JDBC(2):JDBC对数据库进行CRUD
一. statement对象 JDBC程序中的Connection用于代表数据库的链接:Statement对象用于向数据库发送SQL语句:ResultSet用于代表Sql语句的执行结果 JDBC中的s ...
- 微服务中心Eureka
一.简介 Eureka是Netflix开发的服务发现框架,本身是一个基于REST的服务,主要用于定位运行在AWS(AWS 是业务流程管理开发平台AWS Enterprise BPM Platform ...
- shell awk命令字符串拼接
本节内容:awk命令实现字符串的拼接 输入文件的内容: TMALL_INVENTORY_30_GROUP my163149.cm6 3506 5683506 mysql-bin.000013 3273 ...
- C++易错小结
C++ 11 vector 遍历方法小结 方法零,对C念念不舍的童鞋们习惯的写法: void ShowVec(const vector<int>& valList) { int c ...
- AOP切入点的配置
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.spr ...
- matplotlib画3d图
import numpy as npimport matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import Axes3D fig = plt.f ...