令$f_{i}$​​表示以$i$​​为结尾的极长上升子序列个数,则有$f_{i}=\sum_{j<i,a_{j}<a_{i},\forall j<k<i,a_{k}\not\in [a_{j},a_{i}]}f_{j}$

(初始状态为前缀最小值处$f_{i}=1$,最终答案为后缀最大值处的$f_{i}$​之和)

暴力计算复杂度显然为$o(n^{2})$,无法通过

考虑分治计算,当递归到区间$[l,r]$时,需要求出仅考虑$[l,r]$内部的(包括转移的$j$)时的$f_{i}$

具体的,先递归$[l,mid]$,再求出$[l,mid]$对$(mid,r]$的影响,最后递归$(mid,r]$即可

第一步和第三步容易处理,接下来考虑第二步:

具体的,考虑将$a_{l},a_{l+1},...,a_{r}$从小到大排序后枚举,注意到此时左侧的数中,如果存在$x<y$且$a_{x}<a_{y}$,那么$x$一定不会被使用(因为之后右侧的$a_{i}>a_{y}$​​),也即可以维护一个单调栈

(关于这个单调栈,从栈底到栈顶位置单调递减、权值单调递增)

类似地,我们再对右侧维护一个单调栈,从栈底到栈顶位置和权值都单调递增,此时即查询比左边单调栈中比当前比右边单调栈栈顶(插入前,若为空则定义为0)大的位置的$f$之和,可以二分实现

由于需要排序和二分,总复杂度为$o(n\log^{2}n)$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 100005
4 #define mod 998244353
5 int t,n,ans,a[N],id[N],stl[N],str[N],sum[N],f[N];
6 bool cmp(int x,int y){
7 return a[x]<a[y];
8 }
9 void calc(int l,int r){
10 if (l==r)return;
11 int mid=(l+r>>1);
12 calc(l,mid);
13 for(int i=l;i<=r;i++)id[i]=i;
14 sort(id+l,id+r+1,cmp);
15 stl[0]=str[0]=0;
16 for(int i=l;i<=r;i++){
17 if (id[i]<=mid){
18 while ((stl[0])&&(stl[stl[0]]<id[i]))stl[0]--;
19 stl[++stl[0]]=id[i];
20 sum[stl[0]]=(sum[stl[0]-1]+f[id[i]])%mod;
21 }
22 else{
23 while ((str[0])&&(str[str[0]]>id[i]))str[0]--;
24 int pos=lower_bound(stl+1,stl+stl[0]+1,str[str[0]],cmp)-stl;
25 str[++str[0]]=id[i];
26 f[id[i]]=(f[id[i]]+(sum[stl[0]]-sum[pos-1]+mod)%mod)%mod;
27 }
28 }
29 calc(mid+1,r);
30 }
31 int main(){
32 scanf("%d",&t);
33 while (t--){
34 scanf("%d",&n);
35 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
36 int s=n+1;
37 for(int i=1;i<=n;i++){
38 f[i]=(a[i]<s);
39 s=min(s,a[i]);
40 }
41 calc(1,n);
42 s=ans=0;
43 for(int i=n;i;i--){
44 if (a[i]>s)ans=(ans+f[i])%mod;
45 s=max(s,a[i]);
46 }
47 printf("%d\n",ans);
48 }
49 return 0;
50 }

[hdu6991]Increasing Subsequence的更多相关文章

  1. [LeetCode] Longest Increasing Subsequence 最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  2. [tem]Longest Increasing Subsequence(LIS)

    Longest Increasing Subsequence(LIS) 一个美丽的名字 非常经典的线性结构dp [朴素]:O(n^2) d(i)=max{0,d(j) :j<i&& ...

  3. [LintCode] Longest Increasing Subsequence 最长递增子序列

    Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...

  4. LintCode-Longest Increasing Subsequence

    Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...

  5. Leetcode 300 Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  6. [LeetCode] Longest Increasing Subsequence

    Longest Increasing Subsequence Given an unsorted array of integers, find the length of longest incre ...

  7. The Longest Increasing Subsequence (LIS)

    传送门 The task is to find the length of the longest subsequence in a given array of integers such that ...

  8. LCIS POJ 2172 Greatest Common Increasing Subsequence

    题目传送门 题意:LCIS(Longest Common Increasing Subsequence) 最长公共上升子序列 分析:a[i] != b[j]: dp[i][j] = dp[i-1][j ...

  9. 300. Longest Increasing Subsequence

    题目: Given an unsorted array of integers, find the length of longest increasing subsequence. For exam ...

随机推荐

  1. MySQL强人“锁”难《死磕MySQL系列 三》

    系列文章 一.原来一条select语句在MySQL是这样执行的<死磕MySQL系列 一> 二.一生挚友redo log.binlog<死磕MySQL系列 二> 前言 最近数据库 ...

  2. 反调试--CRC检测

    #include"CRC32.h" #include<Windows.h> #include<iostream> using namespace std; ...

  3. 10.11 HTTPS

    没有HTTPS的抓包截图 HTTPS=HTTP + TLS/SSL https 实现过程如下 1.客户端发起HTTPS请求 rewrite www.baidu.com https://www.baid ...

  4. Apache ShardingSphere:由开源驱动的分布式数据库中间件生态

    2021 年 7 月 21 日 2021 亚马逊云科技中国峰会现场,SphereEx 联合创始人.Apache ShardingSphere PMC 潘娟受邀参与此次峰会,以<Apache Sh ...

  5. python-docx处理Word必备工具

      我的理解 为什么会用到python-docx,因为近段时间下载了大量网文,但格式都是html的,我个人习惯使用word处理文字,于是就想法设法把html文档转换为word,首先要考虑的问题就是从h ...

  6. spark性能优化(一)

    本文内容说明 初始化配置给rdd和dataframe带来的影响 repartition的相关说明 cache&persist的相关说明 性能优化的说明建议以及实例 配置说明 spark:2.4 ...

  7. Mybatis一级缓存的锅

    问题背景 项目开发中有一个树形数据结构,不像经典组织结构树.菜单级别树,我们这个树形结构是用户后期手动建立起来的关系.因此数据库表结构为两张表:数据记录表.记录关系表,通过业务规则限制,形成的树形结构 ...

  8. mysql join语句的执行流程是怎么样的

    mysql join语句的执行流程是怎么样的 join语句是使用十分频繁的sql语句,同样结果的join语句,写法不同会有非常大的性能差距. select * from t1 straight_joi ...

  9. Go语言核心36讲(Go语言进阶技术四)--学习笔记

    10 | 通道的基本操作 作为 Go 语言最有特色的数据类型,通道(channel)完全可以与 goroutine(也可称为 go 程)并驾齐驱,共同代表 Go 语言独有的并发编程模式和编程哲学. D ...

  10. [no_code]OCR表格处理——技术规格说明书

    项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 技术规格说明书 我们在这个课程的目标是 远程协同工作,采用最新技术开发软件 这个作业在哪个具体方面 ...