XGBoost特征选择
1. 特征选择的思维导图
2. XGBoost特征选择算法
(1) XGBoost算法背景
2016年,陈天奇在论文《 XGBoost:A Scalable Tree Boosting System》中正式提出该算法。XGBoost的基本思想和GBDT相同,但是做了一些优化,比如二阶导数使损失函数更精准;正则项避免树过拟合;Block存储可以并行计算等。XGBoost具有高效、灵活和轻便的特点,在数据挖掘、推荐系统等领域得到广泛的应用。
(2) 算法原理
(3) 算法实现--python
from sklearn.model_selection import train_test_split
from sklearn import metrics
import xgboost as xgb
import matplotlib.pyplot as plt
from sklearn.model_selection import GridSearchCV
import pandas as pd, numpy as np
import matplotlib as mpl # mpl.rcParams['font.sans-serif']=['FangSong']
# mpl.rcParams['axes.unicode_minus']=False fpath = r".\processData\filter.csv"
Dataset = pd.read_csv(fpath) x = Dataset.loc[:, "nAcid":"Zagreb"]
y1 = Dataset.loc[:, "IC50_nM"]
y2 = Dataset.loc[:, "pIC50"] names = x.columns
names = list(names)
key = list(range(0, len(names)))
names_dict = dict(zip(key, names))
names_dicts = pd.DataFrame([names_dict]) x_train, x_test, y_train, y_test = train_test_split(x, y2, test_size=0.33, random_state=7)
"""
max_depth:树的最大深度
"""
model = xgb.XGBRegressor(max_depth=6, learning_rate=0.12, n_estimators=90, min_child_weight=6, objective="reg:gamma")
model.fit(x_train, y_train) feature_important = model.feature_importances_
rank_idx = np.argsort(feature_important)[::-1]
rank_idx30 = rank_idx[:30] rank_names30 = names_dicts.loc[:, rank_idx30]
label = rank_names30.values[0, :]
path1 = r"Xgboost排名前30的特征.csv"
pd.DataFrame(label).to_csv(path1, index=False) x_score = np.sort(feature_important)[::-1]
path = r"Xgboost排名前30的得分.csv"
pd.DataFrame(x_score[:30]).to_csv(path, index=False)
# xgboost网格搜索调参
gsCv = GridSearchCV(model,
{'max_depth':list(range(3, 10, 1)),
'learning_rate':[0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2],
'min_child_weight':list(range(2, 8, 2)),
'n_estimators':list(range(10, 101, 10))}) gsCv.fit(x_train, y_train)
print(gsCv.best_params_)
cv_results = pd.DataFrame(gsCv.cv_results_)
path = r"paramRank.csv"
cv_results.to_csv(path, index=False) # 可视化
plt.figure()
plt.bar(range(len(model.feature_importances_)), model.feature_importances_)
plt.xlabel("Feature")
plt.ylabel("Feature Score")
plt.title("Feature Importance")
plt.savefig("Xgboost") # 可视化
plt.figure()
plt.barh(label[::-1], x_score[:30][::-1], 0.6, align='center')
plt.grid(ls=':', color='gray', alpha=0.4)
plt.title("Xgboost Feature Importance")
# 添加数据标签
# for a, b in enumerate(rf_score[:30][::-1]):
# plt.text(b+0.1, a-0.6/2, '%s' % b, ha='center', va='bottom') plt.savefig("前30名特征")
plt.show()
注意:该算法没有数据是不能运行的,需要做适当的修改,后面使用网格调参,找到最优参数。
(4) 算法可视化
XGBoost特征选择的更多相关文章
- xgboost 特征选择,筛选特征的正要性
import pandas as pd import xgboost as xgb import operator from matplotlib import pylab as plt def ce ...
- 从信用卡欺诈模型看不平衡数据分类(1)数据层面:使用过采样是主流,过采样通常使用smote,或者少数使用数据复制。过采样后模型选择RF、xgboost、神经网络能够取得非常不错的效果。(2)模型层面:使用模型集成,样本不做处理,将各个模型进行特征选择、参数调优后进行集成,通常也能够取得不错的结果。(3)其他方法:偶尔可以使用异常检测技术,IF为主
总结:不平衡数据的分类,(1)数据层面:使用过采样是主流,过采样通常使用smote,或者少数使用数据复制.过采样后模型选择RF.xgboost.神经网络能够取得非常不错的效果.(2)模型层面:使用模型 ...
- XGBoost、LightGBM的详细对比介绍
sklearn集成方法 集成方法的目的是结合一些基于某些算法训练得到的基学习器来改进其泛化能力和鲁棒性(相对单个的基学习器而言)主流的两种做法分别是: bagging 基本思想 独立的训练一些基学习器 ...
- Stacking:Catboost、Xgboost、LightGBM、Adaboost、RF etc
python风控评分卡建模和风控常识(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005214003&am ...
- Xgboost总结
从决策树.随机森林.GBDT最终到XGBoost,每个热门算法都不是孤立存在的,而是基于一系列算法的改进与优化.决策树算法简单易懂可解释性强,但是过拟合风险很大,应用场景有限:随机森林采用Baggin ...
- Python机器学习笔记:XgBoost算法
前言 1,Xgboost简介 Xgboost是Boosting算法的其中一种,Boosting算法的思想是将许多弱分类器集成在一起,形成一个强分类器.因为Xgboost是一种提升树模型,所以它是将许多 ...
- 机器学习-树模型理论(GDBT,xgboost,lightBoost,随机森林)
tree based ensemble algorithms 主要介绍以下几种ensemble的分类器(tree based algorithms) xgboost lightGBM: 基于决策树算法 ...
- 随机森林RF、XGBoost、GBDT和LightGBM的原理和区别
目录 1.基本知识点介绍 2.各个算法原理 2.1 随机森林 -- RandomForest 2.2 XGBoost算法 2.3 GBDT算法(Gradient Boosting Decision T ...
- RF/GBDT/XGBoost/LightGBM简单总结(完结)
这四种都是非常流行的集成学习(Ensemble Learning)方式,在本文简单总结一下它们的原理和使用方法. Random Forest(随机森林): 随机森林属于Bagging,也就是有放回抽样 ...
随机推荐
- 关于JAVA中顺序IO的基本操作
关于JAVA中顺序IO的基本操作 写在前面 最近研究一下JAVA中的顺序IO,在网络上找了一会儿,发现少有详细的介绍,顾此在此处说说顺序IO,才学疏浅,如有不对,望赐教. 什么是顺序IO 事实上JAV ...
- [luogu7468]愤怒的小N
定义$count(x)$为$x$二进制下1的个数,答案即$\sum_{0\le x<n,count(x)\equiv 1(mod\ 2)}f(x)$ 考虑预处理出$S_{k,i,p}=\sum_ ...
- [atARC062F]Painting Graphs with AtCoDeer
求出点双后缩点,对于点双之间,显然不存在简单环,即每一个简单环一定在一个点双内部,换言之即每一个点双可以独立的考虑,然后将结果相乘 (对于点双之间的边任意染色,即若有$s$条边,还会有$k^{s}$的 ...
- [loj3246]Cave Paintings
题中所给的判定条件似乎比较神奇,那么用严谨的话来说就是对于两个格子(x,y)和(x',y'),如果满足:1.$x\le x'$:2.从(x,y)通过x,x+1,--,n行,允许向四个方向走,不允许经过 ...
- 论文翻译:2020_Densely connected neural network with dilated convolutions for real-time speech enhancement in the time domain
提出了模型和损失函数 论文名称:扩展卷积密集连接神经网络用于时域实时语音增强 论文代码:https://github.com/ashutosh620/DDAEC 引用:Pandey A, Wang D ...
- 【AWS】使用X-Ray做AWS云上全链路追踪监控系统
功能 AWS X-Ray 是一项服务,收集应用程序所请求的相关数据,并提供用于查看.筛选和获取数据洞察力的工具,以确定问题和发现优化的机会. 对于任何被跟踪的对您应用程序的请求,不仅可以查看请求和响应 ...
- DAS,NAS,SAN,简介
根据服务器类型分为:封闭系统的存储和开放系统的存储,封闭系统主要指大型机,开放系统指基于Windows.UNIX.Linux等操作系统的服务器;开放系统的存储分为:内置存储和外挂存储;外挂存储根据连接 ...
- Excel-条件判断
5.条件判断 IFS(条件1,真1,假1-条件2,真2,假2-条件n,真n,假n-条件n+1,...,TRUE,执行) #可以嵌套164个(大概!具体忘了) IF(条件1,真,假)
- 『与善仁』Appium基础 — 16、APPium基础操作API
目录 1.前置代码 2.安装和卸载APP 3.判断APP是否已安装 4.关闭APP软件和关闭驱动对象 5.发送文件到手机和获取手机中的文件 6.获取当前屏幕内元素结构(重点) 7.脚本内启动其他APP ...
- 初学者如何吃透一个Java项目
不少初学者朋友在学习Java过程中,会对着视频敲Java项目,其中遇到的BUG还能解决,但就是每次敲完一个项目,就感觉很空虚,项目里面的知识点感觉懂了但又好像没懂 这些朋友应该怎样才能掌握一个项目所用 ...