1. 特征选择的思维导图

2. XGBoost特征选择算法

(1)  XGBoost算法背景

    2016年,陈天奇在论文《 XGBoost:A Scalable Tree Boosting System》中正式提出该算法。XGBoost的基本思想和GBDT相同,但是做了一些优化,比如二阶导数使损失函数更精准;正则项避免树过拟合;Block存储可以并行计算等。XGBoost具有高效、灵活和轻便的特点,在数据挖掘、推荐系统等领域得到广泛的应用。

  (2) 算法原理

  (3) 算法实现--python

from sklearn.model_selection import train_test_split
from sklearn import metrics
import xgboost as xgb
import matplotlib.pyplot as plt
from sklearn.model_selection import GridSearchCV
import pandas as pd, numpy as np
import matplotlib as mpl # mpl.rcParams['font.sans-serif']=['FangSong']
# mpl.rcParams['axes.unicode_minus']=False fpath = r".\processData\filter.csv"
Dataset = pd.read_csv(fpath) x = Dataset.loc[:, "nAcid":"Zagreb"]
y1 = Dataset.loc[:, "IC50_nM"]
y2 = Dataset.loc[:, "pIC50"] names = x.columns
names = list(names)
key = list(range(0, len(names)))
names_dict = dict(zip(key, names))
names_dicts = pd.DataFrame([names_dict]) x_train, x_test, y_train, y_test = train_test_split(x, y2, test_size=0.33, random_state=7)
"""
max_depth:树的最大深度
"""
model = xgb.XGBRegressor(max_depth=6, learning_rate=0.12, n_estimators=90, min_child_weight=6, objective="reg:gamma")
model.fit(x_train, y_train) feature_important = model.feature_importances_
rank_idx = np.argsort(feature_important)[::-1]
rank_idx30 = rank_idx[:30] rank_names30 = names_dicts.loc[:, rank_idx30]
label = rank_names30.values[0, :]
path1 = r"Xgboost排名前30的特征.csv"
pd.DataFrame(label).to_csv(path1, index=False) x_score = np.sort(feature_important)[::-1]
path = r"Xgboost排名前30的得分.csv"
pd.DataFrame(x_score[:30]).to_csv(path, index=False)
# xgboost网格搜索调参
gsCv = GridSearchCV(model,
{'max_depth':list(range(3, 10, 1)),
'learning_rate':[0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2],
'min_child_weight':list(range(2, 8, 2)),
'n_estimators':list(range(10, 101, 10))}) gsCv.fit(x_train, y_train)
print(gsCv.best_params_)
cv_results = pd.DataFrame(gsCv.cv_results_)
path = r"paramRank.csv"
cv_results.to_csv(path, index=False) # 可视化
plt.figure()
plt.bar(range(len(model.feature_importances_)), model.feature_importances_)
plt.xlabel("Feature")
plt.ylabel("Feature Score")
plt.title("Feature Importance")
plt.savefig("Xgboost") # 可视化
plt.figure()
plt.barh(label[::-1], x_score[:30][::-1], 0.6, align='center')
plt.grid(ls=':', color='gray', alpha=0.4)
plt.title("Xgboost Feature Importance")
# 添加数据标签
# for a, b in enumerate(rf_score[:30][::-1]):
# plt.text(b+0.1, a-0.6/2, '%s' % b, ha='center', va='bottom') plt.savefig("前30名特征")
plt.show()

注意:该算法没有数据是不能运行的,需要做适当的修改,后面使用网格调参,找到最优参数。

   (4)   算法可视化

XGBoost特征选择的更多相关文章

  1. xgboost 特征选择,筛选特征的正要性

    import pandas as pd import xgboost as xgb import operator from matplotlib import pylab as plt def ce ...

  2. 从信用卡欺诈模型看不平衡数据分类(1)数据层面:使用过采样是主流,过采样通常使用smote,或者少数使用数据复制。过采样后模型选择RF、xgboost、神经网络能够取得非常不错的效果。(2)模型层面:使用模型集成,样本不做处理,将各个模型进行特征选择、参数调优后进行集成,通常也能够取得不错的结果。(3)其他方法:偶尔可以使用异常检测技术,IF为主

    总结:不平衡数据的分类,(1)数据层面:使用过采样是主流,过采样通常使用smote,或者少数使用数据复制.过采样后模型选择RF.xgboost.神经网络能够取得非常不错的效果.(2)模型层面:使用模型 ...

  3. XGBoost、LightGBM的详细对比介绍

    sklearn集成方法 集成方法的目的是结合一些基于某些算法训练得到的基学习器来改进其泛化能力和鲁棒性(相对单个的基学习器而言)主流的两种做法分别是: bagging 基本思想 独立的训练一些基学习器 ...

  4. Stacking:Catboost、Xgboost、LightGBM、Adaboost、RF etc

    python风控评分卡建模和风控常识(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005214003&am ...

  5. Xgboost总结

    从决策树.随机森林.GBDT最终到XGBoost,每个热门算法都不是孤立存在的,而是基于一系列算法的改进与优化.决策树算法简单易懂可解释性强,但是过拟合风险很大,应用场景有限:随机森林采用Baggin ...

  6. Python机器学习笔记:XgBoost算法

    前言 1,Xgboost简介 Xgboost是Boosting算法的其中一种,Boosting算法的思想是将许多弱分类器集成在一起,形成一个强分类器.因为Xgboost是一种提升树模型,所以它是将许多 ...

  7. 机器学习-树模型理论(GDBT,xgboost,lightBoost,随机森林)

    tree based ensemble algorithms 主要介绍以下几种ensemble的分类器(tree based algorithms) xgboost lightGBM: 基于决策树算法 ...

  8. 随机森林RF、XGBoost、GBDT和LightGBM的原理和区别

    目录 1.基本知识点介绍 2.各个算法原理 2.1 随机森林 -- RandomForest 2.2 XGBoost算法 2.3 GBDT算法(Gradient Boosting Decision T ...

  9. RF/GBDT/XGBoost/LightGBM简单总结(完结)

    这四种都是非常流行的集成学习(Ensemble Learning)方式,在本文简单总结一下它们的原理和使用方法. Random Forest(随机森林): 随机森林属于Bagging,也就是有放回抽样 ...

随机推荐

  1. Java包装类,以及Integer与int之间的比较

    一.Java的基本类型 Java语言中提供了八种基本类型,包括六种数字类型(四个整数型,两个浮点型),一种字符类型,还有一种布尔型. 整数型,包括byte.short.int.long,默认初始值是0 ...

  2. Java 单例模式大乱斗

    1. 饿汉模式 线程安全 public class SingleInstance1 { private static SingleInstance1 single=new SingleInstance ...

  3. char数据可以放入int[]中会自动转换

    int[] ary ={'b','c','a','d','e','f'};System.out.println(ary[0]);//98String str = new String(ary, 2, ...

  4. [IIS]发布到 IIS 上的程序没有权限访问共享文件

    老板突然跑路了,丢下一个破项目让我一个人维护,各种奇葩问题不断. 为了弄一键发布,布置了新的环境,结果新环境下的程序不能访问共享文件了. 访问共享文件需要设置应用程序池(Application Poo ...

  5. Java培训机构如何选择才能避免被骗?

    近年来,随着IT行业的快速崛起,各类互联网人才供不应求,而Java工程师作为目前最为火爆的岗位之一,更是以高薪+高新技术的标签受到了人们的广泛关注.许多年轻人也看到了这个行业的发展前景,决定报名培训机 ...

  6. 洛谷 P6776 - [NOI2020] 超现实树(找性质,神仙题)

    洛谷题面传送门 nb tea 一道! 首先考虑怎样入手分析这个看似非常不可做的问题.首先题目涉及高度无穷的树,根本枚举不了.不过我们冷静一下就会发现,如果我们记 \(mx=\max\limits_{i ...

  7. Codeforces 1149C - Tree Generator™(线段树+转化+标记维护)

    Codeforces 题目传送门 & 洛谷题目传送门 首先考虑这个所谓的"括号树"与直径的本质是什么.考虑括号树上两点 \(x,y\),我们不妨用一个"DFS&q ...

  8. THUSC2021 & ISIJ2021 游记

    Day -? 4.25 部分摘自日记. 前几天父亲问我 "这个 ISIJ 你要不要报名",我想反正自己 NOIP 和省选那么炸,就当玩玩算了,于是说 "随便吧,那就报呗. ...

  9. TP、PHP同域不同子级域名共享Session、单点登录

    TP.PHP同域不同子级域名共享Session.单点登录 目的: 为了部署同个域名下不同子级域名共享会话,从而实现单点登录的问题,一处登录,同域处处子系统即可以实现自动登录. PHP支持通过设置coo ...

  10. gcc 的编译流程 和gdb的调试方法

    GCC的编译流程分为四个步骤: 预处理(Pre-Processing) 编译(Compiling) 汇编(Assembling) 链接(Linking) 可以看的出来文件大小 gdb 调试 gdb - ...