XGBoost特征选择
1. 特征选择的思维导图

2. XGBoost特征选择算法
(1) XGBoost算法背景
2016年,陈天奇在论文《 XGBoost:A Scalable Tree Boosting System》中正式提出该算法。XGBoost的基本思想和GBDT相同,但是做了一些优化,比如二阶导数使损失函数更精准;正则项避免树过拟合;Block存储可以并行计算等。XGBoost具有高效、灵活和轻便的特点,在数据挖掘、推荐系统等领域得到广泛的应用。
(2) 算法原理

(3) 算法实现--python
from sklearn.model_selection import train_test_split
from sklearn import metrics
import xgboost as xgb
import matplotlib.pyplot as plt
from sklearn.model_selection import GridSearchCV
import pandas as pd, numpy as np
import matplotlib as mpl # mpl.rcParams['font.sans-serif']=['FangSong']
# mpl.rcParams['axes.unicode_minus']=False fpath = r".\processData\filter.csv"
Dataset = pd.read_csv(fpath) x = Dataset.loc[:, "nAcid":"Zagreb"]
y1 = Dataset.loc[:, "IC50_nM"]
y2 = Dataset.loc[:, "pIC50"] names = x.columns
names = list(names)
key = list(range(0, len(names)))
names_dict = dict(zip(key, names))
names_dicts = pd.DataFrame([names_dict]) x_train, x_test, y_train, y_test = train_test_split(x, y2, test_size=0.33, random_state=7)
"""
max_depth:树的最大深度
"""
model = xgb.XGBRegressor(max_depth=6, learning_rate=0.12, n_estimators=90, min_child_weight=6, objective="reg:gamma")
model.fit(x_train, y_train) feature_important = model.feature_importances_
rank_idx = np.argsort(feature_important)[::-1]
rank_idx30 = rank_idx[:30] rank_names30 = names_dicts.loc[:, rank_idx30]
label = rank_names30.values[0, :]
path1 = r"Xgboost排名前30的特征.csv"
pd.DataFrame(label).to_csv(path1, index=False) x_score = np.sort(feature_important)[::-1]
path = r"Xgboost排名前30的得分.csv"
pd.DataFrame(x_score[:30]).to_csv(path, index=False)
# xgboost网格搜索调参
gsCv = GridSearchCV(model,
{'max_depth':list(range(3, 10, 1)),
'learning_rate':[0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2],
'min_child_weight':list(range(2, 8, 2)),
'n_estimators':list(range(10, 101, 10))}) gsCv.fit(x_train, y_train)
print(gsCv.best_params_)
cv_results = pd.DataFrame(gsCv.cv_results_)
path = r"paramRank.csv"
cv_results.to_csv(path, index=False) # 可视化
plt.figure()
plt.bar(range(len(model.feature_importances_)), model.feature_importances_)
plt.xlabel("Feature")
plt.ylabel("Feature Score")
plt.title("Feature Importance")
plt.savefig("Xgboost") # 可视化
plt.figure()
plt.barh(label[::-1], x_score[:30][::-1], 0.6, align='center')
plt.grid(ls=':', color='gray', alpha=0.4)
plt.title("Xgboost Feature Importance")
# 添加数据标签
# for a, b in enumerate(rf_score[:30][::-1]):
# plt.text(b+0.1, a-0.6/2, '%s' % b, ha='center', va='bottom') plt.savefig("前30名特征")
plt.show()
注意:该算法没有数据是不能运行的,需要做适当的修改,后面使用网格调参,找到最优参数。
(4) 算法可视化


XGBoost特征选择的更多相关文章
- xgboost 特征选择,筛选特征的正要性
import pandas as pd import xgboost as xgb import operator from matplotlib import pylab as plt def ce ...
- 从信用卡欺诈模型看不平衡数据分类(1)数据层面:使用过采样是主流,过采样通常使用smote,或者少数使用数据复制。过采样后模型选择RF、xgboost、神经网络能够取得非常不错的效果。(2)模型层面:使用模型集成,样本不做处理,将各个模型进行特征选择、参数调优后进行集成,通常也能够取得不错的结果。(3)其他方法:偶尔可以使用异常检测技术,IF为主
总结:不平衡数据的分类,(1)数据层面:使用过采样是主流,过采样通常使用smote,或者少数使用数据复制.过采样后模型选择RF.xgboost.神经网络能够取得非常不错的效果.(2)模型层面:使用模型 ...
- XGBoost、LightGBM的详细对比介绍
sklearn集成方法 集成方法的目的是结合一些基于某些算法训练得到的基学习器来改进其泛化能力和鲁棒性(相对单个的基学习器而言)主流的两种做法分别是: bagging 基本思想 独立的训练一些基学习器 ...
- Stacking:Catboost、Xgboost、LightGBM、Adaboost、RF etc
python风控评分卡建模和风控常识(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005214003&am ...
- Xgboost总结
从决策树.随机森林.GBDT最终到XGBoost,每个热门算法都不是孤立存在的,而是基于一系列算法的改进与优化.决策树算法简单易懂可解释性强,但是过拟合风险很大,应用场景有限:随机森林采用Baggin ...
- Python机器学习笔记:XgBoost算法
前言 1,Xgboost简介 Xgboost是Boosting算法的其中一种,Boosting算法的思想是将许多弱分类器集成在一起,形成一个强分类器.因为Xgboost是一种提升树模型,所以它是将许多 ...
- 机器学习-树模型理论(GDBT,xgboost,lightBoost,随机森林)
tree based ensemble algorithms 主要介绍以下几种ensemble的分类器(tree based algorithms) xgboost lightGBM: 基于决策树算法 ...
- 随机森林RF、XGBoost、GBDT和LightGBM的原理和区别
目录 1.基本知识点介绍 2.各个算法原理 2.1 随机森林 -- RandomForest 2.2 XGBoost算法 2.3 GBDT算法(Gradient Boosting Decision T ...
- RF/GBDT/XGBoost/LightGBM简单总结(完结)
这四种都是非常流行的集成学习(Ensemble Learning)方式,在本文简单总结一下它们的原理和使用方法. Random Forest(随机森林): 随机森林属于Bagging,也就是有放回抽样 ...
随机推荐
- [cf1458D]Flip and Reverse
将$s$中的01分别变为$1,-1$,即得到一个序列$a_{i}$(设其长度为$n$,下标范围为$[1,n]$) 对$a_{i}$建立一张有向图,其点集合为$Z$,并对$\forall 0\le k& ...
- [hdu6391]Lord Li's problem
首先发现结果与需要改变的具体位置无关,只和需要改变的位置的个数有关,因此设f[i][j]表示选取了i个数字异或结果有j个1,只要分析接下来选择的数和这j个1有几个重合即可: 1. 三个数字全部重合,即 ...
- [bzoj1188]分裂游戏
容易发现所有豆子相互独立,只需要考虑每一个豆子的sg函数并异或起来即可,sg函数从后往前暴力即可 1 #include<bits/stdc++.h> 2 using namespace s ...
- Codeforces 566E - Restoring Map(bitset 优化构造)
Codeforces 题目传送门 & 洛谷题目传送门 本来说好的不做,结果今早又忍不住开了道题/qiao 我们称度为 \(1\) 的点为叶节点,度大于 \(1\) 的点为非叶节点. 首先考虑如 ...
- REPuter注释叶绿体重复序列
REPuter可注释叶绿体重复序列,包括4种类型,Forward(F), Reverse (R), Complement (C), Palindromic (P). REPuter 是可在线注释, 详 ...
- 解决Package is not available (for R version XXX)?
目录 1. 更新R(不推荐) 2. 更改或指定镜像源 3.源码安装 安装R包时这个错误是经常见到的.我认为有几个方法可解决,记录之. 1. 更新R(不推荐) 简单粗暴的方法就是更新R,但这波及的范围太 ...
- raid0 raid1 raid5
关于Raid0,Raid1,Raid5,Raid10的总结 RAID0 定义: RAID 0又称为Stripe或Striping,它代表了所有RAID级别中最高的存储性能.RAID 0提高存储性能 ...
- Linux之crond定时任务
1. 使用crontab工具配置的定时任务 2. 配置定时任务建议规范 3. 定时任务配置问题导致系统出现故障实例 1. 使用crontab工具配置的定时任务 名称 crontab - 维护单个用户的 ...
- jquery时间轴tab切换效果实现结合swiper实现滑动显示效果
需求:根据时间轴进行tab页面内容切换(时间轴需要滑动查看并选择) 实现思路: 结合swiper插件实现滑动显示效果 根据transform: translateX进行左侧切换效果的实现(具体实现cs ...
- LetNet、Alex、VggNet分析及其pytorch实现
简单分析一下主流的几种神经网络 LeNet LetNet作为卷积神经网络中的HelloWorld,它的结构及其的简单,1998年由LeCun提出 基本过程: 可以看到LeNet-5跟现有的conv-& ...