正题

题目链接:https://www.luogu.com.cn/problem/P5644


题目大意

\(n\)个人,每个人被选中的权重是\(a_i\)。每次按照权重选择一个没有死掉的人杀死,求第\(1\)个人最后死的概率。输出答案对\(998244353\)取模。

\(w_i>0,\sum_{i=1}^nw_i\leq 10^5\)


解题思路

这个死掉之后概率的分母会变所以挺麻烦的,考虑一下变成每次随便选择一个人,如果没有死就杀掉,这样每个人被选择的概率就不变了。

然后考虑到计算恰好最后一个死很麻烦,可以假设第\(1\)个人死之后至少还剩下集合\(T\)的人,然后容斥这样就不需要考虑到剩下的人必须在前面都选过一次了。

设\(P(T)\)表示\(1\)死之后剩下集合\(T\)的人的概率,怎么求这个东西,我们可以枚举一下杀到\(1\)之前的轮数(记\(S\)为全集,\(W(S)=\sum_{x\in S}w_x\))

\[P(T)=\sum_{i=0}^{\infty}(\frac{W(S)-W(T)-w_1}{W(S)})^i\frac{w_1}{W(S)}
\]

等比数列求和展开一下就是

\[P(T)=\frac{(\frac{W(S)-W(T)-w_1}{W(S)})^\infty-1}{\frac{W(S)-W(T)-w_1}{W(S)}-1}\frac{w_1}{W(S)}
\]

然后因为那个\(\infty\)的东西是收敛(也就是等于\(0\))的所以

\[P(T)=\frac{W(S)}{W(T)+w_1}\frac{w_1}{W(S)}=\frac{w_1}{w_1+W(T)}
\]

就好了

然后答案就是

\[\sum_{T\in S}(-1)^{|T|}P(T)=\sum_{T\in S}(-1)^{|T|}\frac{w_1}{w_1+W(T)}
\]

但是这样的复杂度是\(O(2^n)\)的显然不可能过。

但是我们不难发现的是因为\(W(S)\leq 10^5\),所以我们可以设\(f(i)\)表示对于所有集合\(T\)使得\(W(T)=i\)的容斥系数和那么答案就变成了

\[\sum_{i=0}^{W(S)}f(i)\frac{w_1}{w_1+i}
\]

但是这个\(f\)怎么求,其实看上去就很生成函数,\(f(i)\)相等于\(\prod_{i=2}^n(1-x^{w_i})\)的第\(i\)次项系数。

这个东西我们分治+\(NTT\)求就好了(因为这个做法实际上和分治\(NTT\)有区别)

时间复杂度\(O(m\log^2 m)\)(\(m=W(S)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=4e5+10,P=998244353;
ll n,w[N],r[N],x[N],y[N];
struct Poly{
ll n,a[N];
}F[20];bool v[20];
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
void NTT(ll *f,ll n,ll op){
for(ll i=0;i<n;i++)
if(i<r[i])swap(f[i],f[r[i]]);
for(ll p=2;p<=n;p<<=1){
ll len=p>>1,tmp=power(3,(P-1)/p);
if(op==-1)tmp=power(tmp,P-2);
for(ll k=0;k<n;k+=p){
ll buf=1;
for(ll i=k;i<k+len;i++){
ll tt=f[i+len]*buf%P;
f[i+len]=(f[i]-tt+P)%P;
f[i]=(f[i]+tt)%P;
buf=buf*tmp%P;
}
}
}
if(op==-1){
ll inv=power(n,P-2);
for(ll i=0;i<n;i++)
f[i]=f[i]*inv%P;
}
return;
}
void Mul(Poly &a,Poly &b){
for(ll i=0;i<a.n;i++)x[i]=a.a[i];
for(ll i=0;i<b.n;i++)y[i]=b.a[i];
ll l=1;while(l<a.n+b.n)l<<=1;
for(ll i=0;i<l;i++)r[i]=(r[i>>1]>>1)|((i&1)?(l>>1):0);
for(ll i=a.n;i<l;i++)x[i]=0;
for(ll i=b.n;i<l;i++)y[i]=0;
NTT(x,l,1);NTT(y,l,1);
for(ll i=0;i<l;i++)x[i]=x[i]*y[i]%P;
NTT(x,l,-1);
for(ll i=0;i<l;i++)a.a[i]=x[i];
a.n=a.n+b.n-1;return;
}
ll findq(){
for(ll i=0;i<20;i++)
if(!v[i]){v[i]=1;return i;}
}
ll Solve(ll l,ll r){
if(l==r){
ll p=findq();
for(ll i=0;i<=w[l];i++)
F[p].a[i]=0;
F[p].a[0]=1;F[p].a[w[l]]=P-1;
F[p].n=w[l]+1;return p;
}
ll mid=(l+r)>>1;
ll ls=Solve(l,mid),rs=Solve(mid+1,r);
Mul(F[ls],F[rs]);v[rs]=0;return ls;
}
signed main()
{
scanf("%lld",&n);
for(ll i=1;i<=n;i++)
scanf("%lld",&w[i]);
ll p=Solve(2,n),ans=0;
for(ll i=0;i<F[p].n;i++)
(ans+=F[p].a[i]*w[1]%P*power(w[1]+i,P-2)%P)%=P;
printf("%lld\n",(ans+P)%P);
return 0;
}

P5644-[PKUWC2018]猎人杀【NTT,分治】的更多相关文章

  1. 洛谷 P5644 - [PKUWC2018]猎人杀(分治+NTT)

    题面传送门 很久之前(2020 年)就听说过这题了,这么经典的题怎么能只听说而亲自做一遍呢 首先注意到每次开枪打死一个猎人之后,打死其他猎人概率的分母就会发生变化,这将使我们维护起来非常棘手,因此我们 ...

  2. LOJ2541 PKUWC2018 猎人杀 期望、容斥、生成函数、分治

    传送门 首先,每一次有一个猎人死亡之后\(\sum w\)会变化,计算起来很麻烦,所以考虑在某一个猎人死亡之后给其打上标记,仍然计算他的\(w\),只是如果打中了一个打上了标记的人就重新选择.这样对应 ...

  3. LOJ2541 PKUWC2018猎人杀(概率期望+容斥原理+生成函数+分治NTT)

    考虑容斥,枚举一个子集S在1号猎人之后死.显然这个概率是w1/(Σwi+w1) (i∈S).于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了. #i ...

  4. 【洛谷5644】[PKUWC2018] 猎人杀(容斥+生成函数+分治NTT)

    点此看题面 大致题意: 有\(n\)个人相互开枪,每个人有一个仇恨度\(a_i\),每个人死后会开枪再打死另一个还活着的人,且第一枪由你打响.设当前剩余人仇恨度总和为\(k\),则每个人被打中的概率为 ...

  5. [LOJ2541][PKUWC2018]猎人杀(容斥+分治+FFT)

    https://blog.csdn.net/Maxwei_wzj/article/details/80714129 n个二项式相乘可以用分治+FFT的方法,使用空间回收可以只开log个数组. #inc ...

  6. [PKUWC2018]猎人杀

    题解 感觉是一道神题,想不出来 问最后\(1\)号猎人存活的概率 发现根本没法记录状态 每次转移的分母也都不一样 可以考虑这样一件事情: 如果一个人被打中了 那么不急于从所有人中将ta删除,而是给ta ...

  7. [LOJ2541] [PKUWC2018] 猎人杀

    题目链接 LOJ:https://loj.ac/problem/2541 Solution 很巧妙的思路. 注意到运行的过程中概率的分母在不停的变化,这样会让我们很不好算,我们考虑这样转化:假设所有人 ...

  8. 题解-PKUWC2018 猎人杀

    Problem loj2541 题意概要:给定 \(n\) 个人的倒霉度 \(\{w_i\}\),每回合会有一个人死亡,每个人这回合死亡的概率为 自己的倒霉度/目前所有存活玩家的倒霉度之和,求第 \( ...

  9. 「PKUWC2018」猎人杀

    「PKUWC2018」猎人杀 解题思路 首先有一个很妙的结论是问题可以转化为已经死掉的猎人继续算在概率里面,每一轮一直开枪直到射死一个之前没死的猎人为止. 证明,设所有猎人的概率之和为 \(W\) , ...

  10. 【LOJ2541】【PKUWC2018】猎人杀(容斥,FFT)

    [LOJ2541][PKUWC2018]猎人杀(容斥,FFT) 题面 LOJ 题解 这题好神仙啊. 直接考虑概率很麻烦,因为分母总是在变化. 但是,如果一个人死亡之后,我们不让他离场,假装给他打一个标 ...

随机推荐

  1. swiper在一个页面多个轮播图

    <script> var swiper = new Swiper('.swiper-container1', { spaceBetween: 30, centeredSlides: tru ...

  2. C#设计模式---观察者模式(Observer Pattern)

    一.目的 提供一种一对多的关系,当主题发生变化时候,可以通知所有关联的对象. 二.定义 观察者模式定义了一种一对多的依赖关系,让多个观察者对象同时监听某一个主题对象,这个主题对象在状态发生变化时,会通 ...

  3. Servlet的特点及运行过程

  4. JavaScript——数组——数组长度

    JavaScript--数组--数组长度 JavaScript中的数组长度是可变的,可用赋值运算符改变数组大小,如果改变之后的数组的长度比原数组大,则新数组会在末尾补充相应数量的空位,空位上的数组元素 ...

  5. 15-SpringCloud Stream

    Stream是什么及Binder介绍 官方文档1 官方文档2 Cloud Stream中文指导手册 什么是Spring Cloud Stream? 官方定义Spring Cloud Stream是一个 ...

  6. Spring系列之JDBC对不同数据库异常如何抽象的?

    前言 使用Spring-Jdbc的情况下,在有些场景中,我们需要根据数据库报的异常类型的不同,来编写我们的业务代码.比如说,我们有这样一段逻辑,如果我们新插入的记录,存在唯一约束冲突,就会返回给客户端 ...

  7. Python 高级特性(1)- 切片

    前言 面 tx 被问到 python 的高级特性相关,这里做个补充学习吧 正向范围取值 关键点 首位下标是 0 第一个数字是起始下标,第二个数字是结束下标(但最终结果不包含它) 代码块一 # 正向范围 ...

  8. adb 常用命令大全(7)- 其他实用功能

    屏幕截图 adb exec-out screencap -p > sc.pn 截图保存到电脑执行该命令的目录下 如果指定文件名以 .png 结尾时可以省略 -p 参数 注意 如果 adb 版本较 ...

  9. Spring基于XML方式加载Bean定义信息(又名:Spring IOC源码时序图)-图解

  10. 用Java实现红黑树

    红黑树是众多"平衡的"搜索树模式中的一种,在最坏情况下,它相关操作的时间复杂度为O(log n). 1.红黑树的属性 红黑树是一种二分查找树,与普通的二分查找树不同的一点是,红黑树 ...