2021牛客暑期多校训练营9C-Cells【LGV引理,范德蒙德行列式】
正题
题目链接:https://ac.nowcoder.com/acm/contest/11260/C
题目大意
一个平面上,\(n\)个起点\((0,a_i)\)分别对应终点\((i,0)\),每次只能往上或者往左走。求不交路径数。
\(1\leq n\leq 5\times 10^5,a_i<a_{i+1},a_n\leq 10^6\)
解题思路
看起来很\(LGV\)引理,先列出行列式
\]
然后提出\(\prod \frac{(a_i+1)!^2}{(a_i+1)!(i+1)!}\)
然后范德蒙德行列式化简就变成
\]
然后后面那个跑\(NTT\)看所有结论就好了。
时间复杂度\(O(a_n\log a_n)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll M=1e6+1,N=4e6+10,P=998244353;
ll T,n,m,a[510000],F[N],G[N],r[N];
ll power(ll x,ll b){
ll ans=1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
//ll dec(ll n){
// ll ans=1,f=1;
// for(ll i=1;i<=n;i++){
// for(ll j=i;j<=n;j++){
// if(a[j][i]){
// if(j!=i)swap(a[i],a[j]),f=-f;
// break;
// }
// }
// ans=ans*a[i][i]%P;
// ll inv=power(a[i][i],P-2);
// for(ll j=i;j<=n;j++)a[i][j]=a[i][j]*inv%P;
// for(ll j=i+1;j<=n;j++){
// ll rate=P-a[j][i];
// for(ll k=i;k<=n;k++)
// (a[j][k]+=rate*a[i][k]%P)%=P;
// }
// }
// return ans;
//}
void NTT(ll *f,ll n,ll op){
for(ll i=0;i<n;i++)
if(i<r[i])swap(f[i],f[r[i]]);
for(ll p=2;p<=n;p<<=1){
ll len=p>>1,tmp=power(3,(P-1)/p);
if(op==-1)tmp=power(tmp,P-2);
for(ll k=0;k<n;k+=p){
ll buf=1;
for(ll i=k;i<k+len;i++){
ll tt=f[i+len]*buf%P;
f[i+len]=(f[i]-tt+P)%P;
f[i]=(f[i]+tt)%P;
buf=buf*tmp%P;
}
}
}
if(op==-1){
ll invn=power(n,P-2);
for(ll i=0;i<n;i++)
f[i]=f[i]*invn%P;
}
return;
}
signed main()
{
scanf("%lld",&n);ll ans=1;
for(ll i=1,z=1;i<=n;i++,z=z*i%P){
scanf("%lld",&a[i]);
ans=ans*(a[i]+1)%P*power(z,P-2)%P;
F[a[i]]++;G[M-a[i]]++;
}
ll m=1;while(m<=2*M)m<<=1;
for(ll i=0;i<m;i++)r[i]=(r[i>>1]>>1)|((i&1)?(m>>1):0);
NTT(F,m,1);NTT(G,m,1);
for(ll i=0;i<m;i++)F[i]=F[i]*G[i]%P;
NTT(F,m,-1);
for(ll i=1;i<m;i++)
ans=ans*power(i,F[M+i])%P;
printf("%lld\n",ans);
return 0;
}
2021牛客暑期多校训练营9C-Cells【LGV引理,范德蒙德行列式】的更多相关文章
- 2021牛客暑期多校训练营3 J 思维
传送门 J-Counting Triangles_2021牛客暑期多校训练营3 (nowcoder.com) 题目 Goodeat finds an undirected complete graph ...
- 2019牛客暑期多校训练营(第五场)G - subsequeue 1 (一题我真的不会的题)
layout: post title: 2019牛客暑期多校训练营(第五场)G - subsequeue 1 (一题我真的不会的题) author: "luowentaoaa" c ...
- B-xor_2019牛客暑期多校训练营(第四场)
题意 给出n个数组(每组数个数不定),m个询问 l, r, x 序号在区间\([l,r]\)的每个数组是否都可以取出任意个数异或出x 题解 判断一个数组能否异或出x,是简单的线性基问题 判断多个线性基 ...
- 2019牛客暑期多校训练营(第九场)A:Power of Fibonacci(斐波拉契幂次和)
题意:求Σfi^m%p. zoj上p是1e9+7,牛客是1e9: 对于这两个,分别有不同的做法. 前者利用公式,公式里面有sqrt(5),我们只需要二次剩余求即可. 后者mod=1e9,5才 ...
- 2019牛客暑期多校训练营(第一场)A题【单调栈】(补题)
链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 题目描述 Two arrays u and v each with m distinct elem ...
- 2019牛客暑期多校训练营(第一场) B Integration (数学)
链接:https://ac.nowcoder.com/acm/contest/881/B 来源:牛客网 Integration 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 5242 ...
- 2019牛客暑期多校训练营(第一场) A Equivalent Prefixes ( st 表 + 二分+分治)
链接:https://ac.nowcoder.com/acm/contest/881/A 来源:牛客网 Equivalent Prefixes 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/ ...
- 2019牛客暑期多校训练营(第二场)F.Partition problem
链接:https://ac.nowcoder.com/acm/contest/882/F来源:牛客网 Given 2N people, you need to assign each of them ...
- 2019牛客暑期多校训练营(第八场)E.Explorer
链接:https://ac.nowcoder.com/acm/contest/888/E来源:牛客网 Gromah and LZR have entered the fifth level. Unli ...
随机推荐
- prism 中的 自定义region
参考网址: https://blog.csdn.net/weixin_30872499/article/details/98673059 并不是所有控件都可以被用作Region了吗?我们将Gird块的 ...
- c++与c#混合编程
C#写界面比较方便,而C++则擅长写算法,所以将两者结合起来将会加快程序的开发速度,并保证程序的质量.但C#与C++的混合编程有很多细节问题需要注意,下面简要列举一些并指出相应的解决办法. 1. 将本 ...
- spring生命周期的应用
1.ApplicationContextAware 实现手工加载bean: 例:https://www.cnblogs.com/wala-wo/p/5119192.html https://www.c ...
- 并发编程之:JMM
并发编程之:JMM 大家好,我是小黑,一个在互联网苟且偷生的农民工. 上一期给大家分享了关于Java中线程相关的一些基础知识.在关于线程终止的例子中,第一个方法讲到要想终止一个线程,可以使用标志位的方 ...
- IDEA快捷键命令
Ctrl+Alt+T IDEl 抛异常快捷键ctrl +o 继承类时 继承方法快捷键Ctrl+Alt+左右方向键 回到上次光标停留的地方ALt +left/right 快速切换两个页面ctr ...
- Springboot 整合通用mapper和pagehelper展示分页数据(附github源码)
简介 springboot 设计目的就是为了加速开发,减少xml的配置.如果你不想写配置文件只需要在配置文件添加相对应的配置就能快速的启动的程序. 通用mapp 通用mapper只支持对单表的操作,对 ...
- Django——Paginator分页功能练习
1.路由urls.py from django.contrib import admin from django.urls import path from app01.views import in ...
- C#新版本风格(NetCore)项目文件
在VisualStudio中创建NetCore以上版本的项目,使用的都是新版本风格的项目文件. 和旧版本.NetFramework版本的项目文件区别: 双击项目可直接打开csproj文件进行编辑配置 ...
- 【流程】Flowable流程定义总结
背景 近几年,互联网企业从消费互联网向产业互联网转型.在消费互联网时期,企业面对的时C端消费者,而产业互联网面对的是B端用户. 产业互联网涉及方方面面,企业信息化的建设就是B端用户的业务之一,在企业就 ...
- k8s garbage collector分析(1)-启动分析
k8s garbage collector分析(1)-启动分析 garbage collector介绍 Kubernetes garbage collector即垃圾收集器,存在于kube-contr ...