Solution -「CF 848D」Shake It!
\(\mathcal{Description}\)
Link.
初始有一个有向图 \(G=(V,E)\),\(V=\{s,t\}\),\(E=\langle s,t\rangle\),一次操作定义为取任意 \(\langle u,v\rangle\in E\),设 \(w\) 为一个新结点,则令 \(V=V\cup\{w\}\),\(E=E\cup \{\langle u,w\rangle,\langle w,v\rangle\}\)。现进行 \(n\) 次操作,求最终有多少个本质不同的 \(G\),满足 \(\operatorname{cut}(s,t)=m\),答案对 \((10^9+7)\) 取模。
\(G\) 与 \(G'\) 本质相同:存在一个 \(s,t\) 均为不动点的 \(f:V_G\rightarrow V_{G'}\),使得 \(f\) 作用于 \(G\) 后有 \(E_G=E_{G'}\)。
\(n,m\le50\)。
\(\mathcal{Solution}\)
灵性的 DP 神题。
我们称一次选取 \(\langle u,v\rangle\) 边的操作为对 \(\langle u,v\rangle\) 的扩展。
令 \(f(i,j)\) 表示 \(i\) 次操作使原图的最大流为 \(j\) 的方案数,可见 \(f(n,m)\) 为答案;同时令 \(F(i,j)\) 为其第二维后缀和,即 \(F(i,j)=\sum_{k\ge j}f(i,j)\)。
然后不难发现完全转移不了。 再令 \(g(i,j)\) 表示对于任意边 \(\langle u,v\rangle\),\(i\) 次操作,扩展且仅扩展 \(\langle u,v\rangle\) 一次,使得 \(u\) 到 \(v\) 的最大流增加 \(j\)(变为 \(j+1\))的方案数;同理定义 \(G(i,j)\)。注意 \(g\) 与 \(f\) 的区别,例如对于下图中的 <绿点, 红点>:
上图的方案都是 \(g(3,1)\) 所包含的,而
都不是 \(g(4,3)\) 所包含的,因为它们都扩展了 <绿点, 蓝点> 这条边多于一次。
接着考虑 \(f\) 与 \(g\) 的关系,有
\]
即,先用一次操作扩展初始的 \(\langle u,v\rangle\),此后 \(\langle u,w\rangle,\langle w,v\rangle\) 都成为 \(f\) 的子问题,只要使两者的最大流同时不小于 \(j\),则 \(u\) 到 \(v\) 增加的流也不小于 \(j\)。并且由于 \(u,v\) 在映射中不动,所有方案均本质不同。
难点在于对 \(f\) 的转移。我们要选取若干个 \(g\) 作用在初始的 \(\langle s,t\rangle\),形成最终的图 \(G\),同时保证方案本质不同。即,找到 \(g(i_1,j_1,),g(i_2,j_2),\cdots,g(i_s,j_s)\),使得 \(\sum i=n\) 且 \(\sum j=m-1\)(\(s\) 到 \(t\) 本身就有 \(1\) 的流)。那么,在转移过程中,仅需考虑在选择方案的末尾加入 \(k\) 个当前的 \(g(i,j)\),\(k\) 个 \(g(i,j)\) 内部的方案用隔板法可知为 \(\binom{g(i,j)+k}{k}\),再乘上原有方案数即可。因为不同 \(g\) 之间钦定无序,相同 \(g\) 之间隔板法保证无序,故方案无序,即本质不同。
到此,复杂度 \(\mathcal O(n^4\ln n)\),瓶颈在于枚举“\(k\) 个当前的 \(g(i,j)\)”。
\(\mathcal{Code}\)
代码中 f[][]
对应 \(F\),g[][]
对应 \(G\),h[][]
对应稍作下标移动的 \(f\)。
/* Clearink */
#include <cstdio>
#define rep( i, l, r ) for ( int i = l, repEnd##i = r; i <= repEnd##i; ++i )
#define per( i, r, l ) for ( int i = r, repEnd##i = l; i >= repEnd##i; --i )
const int MAXN = 50, MOD = 1e9 + 7;
int n, m, ifac[MAXN + 5];
inline int imin( const int a, const int b ) { return a < b ? a : b; }
inline int mul( const long long a, const int b ) { return a * b % MOD; }
inline int sub( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline void subeq( int& a, const int b ) { ( a -= b ) < 0 && ( a += MOD ); }
inline int add( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline void addeq( int& a, const int b ) { ( a += b ) >= MOD && ( a -= MOD ); }
inline int mpow( int a, int b ) {
int ret = 1;
for ( ; b; a = mul( a, a ), b >>= 1 ) ret = mul( ret, b & 1 ? a : 1 );
return ret;
}
inline void init() {
int& t = ifac[MAXN] = 1;
rep ( i, 1, MAXN ) t = mul( t, i );
t = mpow( t, MOD - 2 );
per ( i, MAXN - 1, 0 ) ifac[i] = mul( ifac[i + 1], i + 1 );
}
int f[MAXN + 5][MAXN + 5], g[MAXN + 5][MAXN + 5], h[MAXN + 5][MAXN + 5];
int main() {
init();
scanf( "%d %d", &n, &m );
f[0][1] = h[0][0] = 1;
rep ( i, 1, n ) {
rep ( j, 1, i + 1 ) {
int& crg = g[i][j];
rep ( k, 0, i - 1 ) {
addeq( crg, mul( f[k][j], f[i - k - 1][j] ) );
}
}
rep ( j, 1, i + 1 ) {
int gv = sub( g[i][j], g[i][j + 1] );
per ( a, n, 0 ) per ( b, n + 1, 0 ) {
int crh = 0;
for ( int k = 0, si = 0, sj = 0, up = 1;
si <= a && sj <= b; ++k, si += i, sj += j ) {
addeq( crh, mul( h[a - si][b - sj], mul( up, ifac[k] ) ) );
up = mul( up, add( gv, k ) );
}
h[a][b] = crh;
}
}
per ( j, i + 1, 1 ) {
f[i][j] = add( h[i][j - 1], f[i][j + 1] );
}
}
printf( "%d\n", sub( f[n][m], f[n][m + 1] ) );
return 0;
}
Solution -「CF 848D」Shake It!的更多相关文章
- Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...
- Solution -「CF 1622F」Quadratic Set
\(\mathscr{Description}\) Link. 求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...
- Solution -「CF 923F」Public Service
\(\mathscr{Description}\) Link. 给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...
- Solution -「CF 923E」Perpetual Subtraction
\(\mathcal{Description}\) Link. 有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...
- Solution -「CF 1586F」Defender of Childhood Dreams
\(\mathcal{Description}\) Link. 定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...
- Solution -「CF 1237E」Balanced Binary Search Trees
\(\mathcal{Description}\) Link. 定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...
- Solution -「CF 623E」Transforming Sequence
题目 题意简述 link. 有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...
- Solution -「CF 1023F」Mobile Phone Network
\(\mathcal{Description}\) Link. 有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...
- Solution -「CF 599E」Sandy and Nuts
\(\mathcal{Description}\) Link. 指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...
随机推荐
- 在CentOS7上安装 jq
安装EPEL源: yum install epel-release 安装完EPEL源后,可以查看下jq包是否存在: yum list jq 安装jq: yum -y install jq 命令参考资料 ...
- 10个JS技巧
1.过滤唯一值 Set 对象是es6新引入的,配合扩展运算符[...]一起使用,我们可以用它来过滤数组的唯一值. const array = [1, 1, 2, 3, 5, 5, 1] const u ...
- mysql 连接表 内连接 inner
字段去重 关键字distinct 去除重复记录 可配合分组函数使用 select distinct job,deptno from emp; 未使用 distinct之前 使用后: 笛卡尔积现象:当 ...
- XRecyclerView:实现下拉刷新、滚动到底部加载更多以及添加header功能的RecyclerView
介绍: 一个实现了下拉刷新,滚动到底部加载更多以及添加header功能的的RecyclerView.使用方式和RecyclerView完全一致,不需要额外的layout,不需要写特殊的adater. ...
- RHCSA 第三天
1.将echo "This is my first time to use pipe"内容输出到屏幕上,且保存到pipe_data.txt中 2. 重定向: a.新建一个文件red ...
- 一文搞清楚 DNS 的来龙去脉
目录 美国霸权 ICANN:互联网界的联合国 IP 地址分配 域名解析架构 分层架构: DNS 缓存: 根 DNS 服务器: 顶级 DNS 服务器(TLD): 权威 DNS 服务器: 本地 DNS: ...
- 微信小程序云开发指南
一.初识云开发 官方文档 小程序·云开发是微信团队联合腾讯云推出的专业的小程序开发服务. 开发者可以使用云开发快速开发小程序.小游戏.公众号网页等,并且原生打通微信开放能力. 开发者无需搭建服务器,可 ...
- HashSet 实现类
HashSet 实现类 通过 HashCode 判断元素是否存在,若存在则不添加,否则添加以此实现唯一性 常用方法 Modifier and Type Method and Description b ...
- IDEA中导入Maven工程(module)
导入其它Maven工程时可能会出现依赖代码变红等等可以重新导入 右键pom.xml文件 --->Maven---->Reimport ,idea强制刷新内容,一般能解决依赖没有识别的问题 ...
- logrotate 日志切割
logrotate是一个日志文件管理工具.用于分割日志文件,删除旧的日志文件,并创建新的日志文件,起到"转储"作用. 配置文件 Linux系统默认安装logrotate工具,它默认 ...