\(\mathcal{Description}\)

  Link.

  有 \(n\) 个站台在一个圆环上,顺时针编号 \(1\sim n\),其中 \(1\sim m\) 号站台只能乘坐顺时针转的环线,其他车站只能乘坐逆时针转的环线。给定起点 \(s\) 和参数 \(t\),运动规则为:

  1. 乘坐在 \(s\) 站的环线,坐 \(t\) 站,令 \(s\) 为到达的站点;

  2. 令 \(t\leftarrow t-1\),若 \(t>0\),返回第一步。

  求 \(s\) 最终的值。

  \(3\le n\le10^5\),\(1\le t\le 10^{12}\)。

\(\mathcal{Solution}\)

  想要倍增?参数 \(t\) 每时每刻在变化,不可能直接倍增。

  但注意到运动是在环上,所以 \(t\) 和 \((t\bmod n)\) 在当前一步运动所达到的效果是等价的,而且 \(n\) 的范围能够接受,我们可以暴力模拟直到 \(t\) 成为 \(n\) 的倍数。

  接着再用倍增,我们需要求出从 \(i~(i=1,2,\cdots,n)\) 出发,参数 \(t=n\),运动完成后到达的点。不放令所有点编号 \(-1\) 方便接下来使用 DP,令 \(f(i,j)\) 表示从 \(i\) 出发,参数 \(t=j\),运动完成后到达的点。显然有转移

\[f(i,j)=\begin{cases}
i&j=0\\
f(i+j,j-1)&i\in[0,m)\land j>0\\
f(i-j,j-1)&i\in[m,n)\land j>0
\end{cases}
\]

其中第一维默认取\(\bmod n\) 意义下的非负值。可见,我们仅需要支持对 \(f(i)\) 这一维状态进行整段的提取和拼接,就能“整体 DP”出 \(f(i+1)\) 的状态。

  用可持久化 treap 维护这一过程即可。注意 DP 中提取出的两段区间可能有大面积重叠,需要使用随机合并的方法实现 merge 操作,并且定期重构树并回收掉所有用于持久化的结点。

  求出 \(f(i,n)\) 后,对其处理倍增数组即可回答询问。

  复杂度 \(\mathcal O(n\log t)\),常数较大。

\(\mathcal{Code}\)

/* Clearink */

#include <cstdio>
#include <cassert>
#include <cstdlib> #define rep( i, l, r ) for ( int i = l, rpbound##i = r; i <= rpbound##i; ++i )
#define per( i, r, l ) for ( int i = r, rpbound##i = l; i >= rpbound##i; --i ) typedef long long LL; const int MAXN = 1e5, MAXLG = 39;
int n, m, s, f[MAXN + 5][MAXLG + 5], tf[MAXN + 5];
LL turn; struct PersistentTreap {
static const int MAXND = 4e7;
int node, val[MAXND + 5], ch[MAXND + 5][2], siz[MAXND + 5];
// nodes's id are 0-based. PersistentTreap() { srand( 20120712 ); } inline int crtnd( const int v ) {
int u = node++;
val[u] = v, ch[u][0] = ch[u][1] = -1, siz[u] = 1;
return u;
} inline void copy( const int u, const int v ) {
val[u] = val[v], ch[u][0] = ch[v][0], ch[u][1] = ch[v][1];
siz[u] = siz[v];
} inline void pushup( const int u ) {
siz[u] = 1 + ( ~ch[u][0] ? siz[ch[u][0]] : 0 )
+ ( ~ch[u][1] ? siz[ch[u][1]] : 0 );
} inline bool goleft( const int a, const int b ) {
return rand() % ( a + b ) < a;
} inline int merge( const int u, const int v ) {
if ( !~u || !~v ) return ~u ? u : v;
int w = crtnd( 0 );
if ( goleft( siz[u], siz[v] ) ) {
copy( w, u ), ch[w][1] = merge( ch[w][1], v );
} else {
copy( w, v ), ch[w][0] = merge( u, ch[w][0] );
}
return pushup( w ), w;
} inline void rsplit( const int u, const int k, int& x, int& y ) {
if ( !~u ) return void( x = y = -1 );
if ( !k || ( ~ch[u][0] && k <= siz[ch[u][0]] ) ) {
assert( node < MAXND );
copy( y = crtnd( 0 ), u );
rsplit( ch[y][0], k, x, ch[y][0] );
pushup( y );
} else {
assert( node < MAXND );
copy( x = crtnd( 0 ), u );
rsplit( ch[x][1],
k - ( ~ch[u][0] ? siz[ch[u][0]] : 0 ) - 1, ch[x][1], y );
pushup( x );
}
} inline int rebuild( const int l, const int r, const int* arr ) {
if ( l > r ) return -1;
int mid = l + r >> 1, u = crtnd( arr[mid] );
ch[u][0] = rebuild( l, mid - 1, arr );
ch[u][1] = rebuild( mid + 1, r, arr );
return pushup( u ), u;
} inline void travel( const int u, int& idx, int* arr ) {
if ( !~u ) return ;
travel( ch[u][0], idx, arr );
arr[idx++] = val[u];
travel( ch[u][1], idx, arr );
}
} trp; inline int extract( const int rt, int l, int r ) {
l = ( l % n + n ) % n, r = ( r % n + n ) % n;
int x, y, z;
if ( l <= r ) {
trp.rsplit( rt, l, x, y );
assert( trp.siz[y] >= r - l + 1 );
trp.rsplit( y, r - l + 1, y, z );
return y;
} else {
trp.rsplit( rt, r + 1, x, y );
assert( trp.siz[y] >= l - r - 1 );
trp.rsplit( y, l - r - 1, y, z );
return trp.merge( z, x );
}
} int main() {
scanf( "%d %d %d %lld", &n, &m, &s, &turn ), --s;
for ( ; turn % n; --turn ) {
s = ( s + ( s < m ? turn : -turn ) % n + n ) % n;
}
turn /= n;
int rt = -1;
rep ( i, 0, n - 1 ) rt = trp.merge( rt, trp.crtnd( i ) );
rep ( i, 1, n ) {
rt = trp.merge( extract( rt, i, i + m - 1 ),
extract( rt, m - i, n - i - 1 ) );
if ( !( i % 5000 ) ) {
int tmp = 0;
trp.travel( rt, tmp, tf );
trp.node = 0, rt = trp.rebuild( 0, tmp - 1, tf );
}
}
int tmp = 0;
trp.travel( rt, tmp, tf );
rep ( i, 0, n - 1 ) f[i][0] = tf[i];
for ( int j = 1; 1ll << j <= turn; ++j ) {
rep ( i, 0, n - 1 ) {
f[i][j] = f[f[i][j - 1]][j - 1];
}
}
for ( int j = 39; ~j; --j ) if ( ( turn >> j ) & 1 ) s = f[s][j];
printf( "%d\n", s + 1 );
return 0;
}

Solution -「CF 1056G」Take Metro的更多相关文章

  1. Solution -「CF 1342E」Placing Rooks

    \(\mathcal{Description}\)   Link.   在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...

  2. Solution -「CF 1622F」Quadratic Set

    \(\mathscr{Description}\)   Link.   求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...

  3. Solution -「CF 923F」Public Service

    \(\mathscr{Description}\)   Link.   给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...

  4. Solution -「CF 923E」Perpetual Subtraction

    \(\mathcal{Description}\)   Link.   有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...

  5. Solution -「CF 1586F」Defender of Childhood Dreams

    \(\mathcal{Description}\)   Link.   定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...

  6. Solution -「CF 1237E」Balanced Binary Search Trees

    \(\mathcal{Description}\)   Link.   定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...

  7. Solution -「CF 623E」Transforming Sequence

    题目 题意简述   link.   有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...

  8. Solution -「CF 1023F」Mobile Phone Network

    \(\mathcal{Description}\)   Link.   有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...

  9. Solution -「CF 599E」Sandy and Nuts

    \(\mathcal{Description}\)   Link.   指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...

随机推荐

  1. centos 目录结构

    bin -----存放命令的目录(bin目录是快捷方式)是/usr/bin的快捷方式 sbin ----只有root用户才能使用的命令 etc ----系统服务的配置文件 /usr/local --- ...

  2. 自定义异步爬虫架构 - AsyncSpider

    作者:张亚飞 山西医科大学在读研究生 1. 并发编程 Python中实现并发编程的三种方案:多线程.多进程和异步I/O.并发编程的好处在于可以提升程序的执行效率以及改善用户体验:坏处在于并发的程序不容 ...

  3. Linux系统管理学习实训任务书

    1.<Linux系统管理实训任务一之搭建实验基础环境> https://www.toutiao.com/i6763578305091207694/ 2.<Linux系统管理实训任务一 ...

  4. 修正了Model1模式,进入如今盛行的的Model2模式,也就是MVC模式

    注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6513668601843548675/ 1.<JSP页面实际上就是Servlet> 2.<JSP页 ...

  5. 用户注册调优 及Connection对象

    调优的方法: (1)减少Connection对象的销毁与创建 我们可以在服务器启动时 预先创建好二十个Connection对象 因为每次Coonection对象的创建与销毁会浪费大量的时间  我们需要 ...

  6. Visaul Studio 2015 MFC 应用程序工程创建

    近一段时间开始接触到MFC桌面开发程序,忙完了一段时间的项目开发之后,来整理整理Visaul Studio 2015开发MFC桌面程序的基本功能. 首先从创建软件工程项目开始,Visaul Studi ...

  7. 新设备关联Gitlab

    新设备关联Gitlab 1:创建SSH Key.在用户主目录下,看看有没有.ssh目录,如果有,再看看这个目录下有没有id_rsa和id_rsa.pub这两个文件,如果已经有了,可直接跳到下一步.如果 ...

  8. [Jetson Nano]Jetson Nano快速入门

    NVIDIAJetsonNano开发套件是适用于制造商,学习者和开发人员的小型AI计算机.相比Jetson其他系列的开发板,官方报价只要99美金,可谓是相当有性价比.本文如何是一个快速入门的教程,主要 ...

  9. Python中hash加密

    目录 简介 概念 特点 hash有哪些 算法碰撞 加盐防碰撞 加密 hashlib 主要方法 特有方法 使用方法 加盐 crypt 主要方法 使用说明 应用 密码加密 应用一致性校验 简介 概念 散列 ...

  10. AOP操作-准备工作

    AOP操作(准备) 1,Spring 框架中一般基于 AspectJ 实现AOP操作 (1)什么是 AspectJ *AspectJ 不是 Spring 组成部分,独立AOP框架,一般把 Aspect ...