【树状数组】【P3902】 递增
Description
给你一个长度为\(n\)的整数数列,要求修改最少的数字使得数列单调递增
Input
第一行为\(n\)
第二行\(n\)个数代表数列
Output
输出一行代表答案
Hint
\(For~All:\)
\(1~\leq~n~\leq~10^5\)
Solution
看了下题目的意思貌似允许修改成实数,所以这里求一个LIS就完事了。但是发现\(n^2\)的LIS会爆炸,然而我又不会用单调性二分的\(O(nlogn)\)的做法,于是自己口胡了一个树状数组的做法。
在此声明一下这个做法有点水所以不能确定是不是有人提出过。但我确实口胡出来了
显然读入可以离散化。离散化以后把DP的状态定义改变一下,设\(f_i\)为当前算到的以\(i\)为结尾的LIS的ans。
考虑转移,显然正向DP时对于一个新位置\(f_i=\max\{f_j\}+1\),其中\(j~<~i\)。发现\(f_i\)转移是由一个小于\(i\)的前缀\(\max\)转移来的。
于是可以树状数组维护这个前缀\(\max\),更新\(f_i\)以后在树状数组上更新一下就好
Code
#include<cmath>
#include<cstdio>
#include<algorithm>
#define rg register
#define ci const int
#define cl const long long int
typedef long long int ll;
namespace IO {
char buf[300];
}
template <typename T>
inline void qr(T &x) {
rg char ch=getchar(),lst=' ';
while((ch > '9') || (ch < '0')) lst=ch,ch=getchar();
while((ch >= '0') && (ch <= '9')) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if(lst == '-') x=-x;
}
template <typename T>
inline void qw(T x,const char aft,const bool pt) {
if(x < 0) {putchar('-');x=-x;}
rg int top=0;
do {
IO::buf[++top]=x%10+'0';
} while(x/=10);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
}
template <typename T>
inline T mmax(const T a,const T b) {return a > b ? a : b;}
template <typename T>
inline T mmin(const T a,const T b) {return a < b ? a : b;}
template <typename T>
inline T mabs(const T a) {return a < 0 ? -a : a;}
template <typename T>
inline void mswap(T &a,T &b) {
T _temp=a;a=b;b=_temp;
}
const int maxn = 100010;
int n;
int MU[maxn],tree[maxn],frog[maxn],temp[maxn];
int ask(int);
void init_hash();
void change(int,ci);
inline int lowbit(ci x) {return x&(-x);}
int main() {
qr(n);
for(rg int i=1;i<=n;++i) {qr(MU[i]);temp[i]=MU[i];}
init_hash();
for(rg int i=1;i<=n;++i) {
frog[MU[i]]=ask(MU[i]-1)+1;
change(MU[i],frog[MU[i]]);
}
qw(n-ask(n),'\n',true);
return 0;
}
void init_hash() {
std::sort(temp+1,temp+1+n);
int *ed=std::unique(temp+1,temp+1+n);
for(rg int i=1;i<=n;++i) MU[i]=std::lower_bound(temp+1,ed,MU[i])-temp;
}
int ask(int x) {
int _ans=0;
while(x) {
_ans=mmax(_ans,tree[x]);
x-=lowbit(x);
}
return _ans;
}
void change(int x,ci v) {
while(x <= n) {
tree[x]=mmax(tree[x],v);
x+=lowbit(x);
}
}
Summary
以后麻麻再也不用担心我不会\(O(nlogn)\)求LIS辣!
【树状数组】【P3902】 递增的更多相关文章
- Codeforces 961 容斥叉积判共线 树状数组递增思想题
A B C D 给你N个点 问你能不能有两条直线穿过这N个点 首先假设这N个点是可以被两条直线穿过的 所以两条直线就把这N个点划分成两个集合 我们取1 2 3三个点这样必定会有两个点在一个集合内 ch ...
- codeforces 597C C. Subsequences(dp+树状数组)
题目链接: C. Subsequences time limit per test 1 second memory limit per test 256 megabytes input standar ...
- [noip科普]关于LIS和一类可以用树状数组优化的DP
预备知识 DP(Dynamic Programming):一种以无后效性的状态转移为基础的算法,我们可以将其不严谨地先理解为递推.例如斐波那契数列的递推求法可以不严谨地认为是DP.当然DP的状态也可以 ...
- Codeforces 486E LIS of Sequence --树状数组求LIS
题意: 一个序列可能有多个最长子序列,现在问每个元素是以下三个种类的哪一类: 1.不属于任何一个最长子序列 2.属于其中某些但不是全部最长子序列 3.属于全部最长子序列 解法: 我们先求出dp1[i] ...
- hdu 4000Fruit Ninja 树状数组
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...
- HDU3333 Turing Tree 树状数组+离线处理
Turing Tree Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- POJ 2299 树状数组+离散化求逆序对
给出一个序列 相邻的两个数可以进行交换 问最少交换多少次可以让他变成递增序列 每个数都是独一无二的 其实就是问冒泡往后 最多多少次 但是按普通冒泡记录次数一定会超时 冒泡记录次数的本质是每个数的逆序数 ...
- 树状数组POJ2352星星
http://poj.org/problem?id=2352 这道题的题意对于住学者应该比较难理解,但是如果弄明白他的意思的话,你就会发现这就是赤裸裸的树状数组,哎,欺负我不懂是吧,当时读题读啦好久, ...
- hdu 5654 xiaoxin and his watermelon candy 树状数组维护区间唯一元组
题目链接 题意:序列长度为n(1<= n <= 200,000)的序列,有Q(<=200,000)次区间查询,问区间[l,r]中有多少个不同的连续递增的三元组. 思路:连续三元组-& ...
随机推荐
- Pvmove中断后恢复LV状态
Pvmove中断后恢复LV状态 pvmove执行时关闭中断窗口后,pvmove进程会被强制杀掉,从而导致lv的状态异常,无法重新进行pvmove和其他lvm镜像增加相关操作,可以通过如下方式修复: ...
- Ubuntu—安装python的第三方包gevent
今晚花很多时间, 使用 sudo pip3 install gevent 但是始终没有成功. 柳暗花明又一村 sudo apt-get install python3-gevent 搞定!!! 人生如 ...
- access数据库频繁读取操作会出现 System.Data.OleDb.OleDbException 的异常解决
asp.net access数据库 本来想着打开一个access数据库连接后,不关闭,下次操作数据了,直接拿来用,谁知道连着测试64次后(大概这么多次),就会出现System.Data.OleDb.O ...
- Linux虚拟机centos系统安装
linux 其他知识目录 安装完后如果虚拟机网络不通请参考:虚拟机网络不通故障解决 1.centos6.9安装 后面安装出了点问题,ip没有并且eth0网卡找不到,不过重新配置ifcfg-eth0后重 ...
- Spark Streaming的使用——转载
转载自 Spark Streaming 使用
- 2016-6-2-第二个sprint
1.开始一个新的冲刺: 起止:2016.6.1~2016.6.14 ProductBacklog:继续向下细化 Sprint 计划会议:确定此次冲刺要完成的目标 Sprint Backlog:新的冲刺 ...
- 1.12Linux下软件安装(学习过程)
实验介绍 介绍 Ubuntu 下软件安装的几种方式,及 apt,dpkg 工具的使用. 一.Linux 上的软件安装 通常 Linux 上的软件安装主要有三种方式: 在线安装 从磁盘安装deb软件包 ...
- Linux 下web开发环境搭建-jdk环境搭建
Centos 7 附:windows 下jdk环境变量 CLASSPATH .;%JAVA_HOME%\lib;%JAVA_HOME%\lib\dt.jar;%JAVA_HOME%\lib\tools ...
- KMP---POJ 3461 Oulipo
Description The French author Georges Perec (1936–1982) once wrote a book, La disparition, without t ...
- 领悟JavaScript面向对象
JavaScript 是面向对象的.但是不少人对这一点理解得并不全面. 在 JavaScript 中,对象分为两种.一种可以称为“普通对象”,就是我们所普遍理解的那些:数字.日期.用户自定义的对象(如 ...