思路:有一个公式  如果 x = a1 ^ b1 * a2 ^ b2 * ...... * an ^ bn 其中ai为质数,那么总共的因子个数为 (b1 + 1) * (b2 + 1) *....* (bn + 1),

可得最多只和前16个质数有关,那么我们dfs暴力枚举每个质数的指数个数,注意因为值很大,所以比较过程用了log,后面上个大数输出。

import java.math.BigInteger;
import java.util.*; public class Main {
static int n;
static int prime[] = {0,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53};
static int ret[] = new int[17];
static int tmp[] = new int[17];
static double lg[] = new double[17];
static double mn = 100000000000000000.0;
public static void main(String[] args) {
Scanner in = new Scanner(System.in); n = in.nextInt(); for(int i = 1; i <= 16; i++) {
lg[i] = Math.log(prime[i]);
} dfs(0.0, n, 1, 1000000); BigInteger ans = BigInteger.valueOf(1);
for(int i = 1; i <= 16; i++) {
for(int j = 1; j <= ret[i]; j++) {
ans = ans.multiply(BigInteger.valueOf(prime[i]));
}
}
System.out.println(ans);
in.close();
} static void dfs(double x, int y, int z, int pre) {
if(x >= mn) return;
if(y == 1) {
mn = x;
for(int i = 1; i <= 16; i++) {
ret[i] = 0;
if(i <= z - 1) {
ret[i] = tmp[i];
}
}
return;
}
if(z > 16) return;
for(int i = 0; (i + 1) * (i + 1) <= y; i++) {
if(y % (i + 1) == 0) {
if(i != 0 && i <= pre) {
tmp[z] = i;
dfs(x + lg[z] * i, y / (i + 1), z + 1, i);
} if((i + 1) * (i + 1) != y && y / (i + 1) - 1 <= pre) {
tmp[z] = y / (i + 1) - 1;
dfs(x + lg[z] * (y / (i + 1) - 1), i + 1, z + 1, y /(i + 1) - 1);
}
}
}
}
}

bzoj 1225 dfs + 一点点数论的更多相关文章

  1. BZOJ 1225: [HNOI2001] 求正整数( dfs + 高精度 )

    15 < log250000 < 16, 所以不会选超过16个质数, 然后暴力去跑dfs, 高精度计算最后答案.. ------------------------------------ ...

  2. BZOJ 1053 - 反素数ant - [数论+DFS][HAOI2007]

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1053 题解: 可以证明,$1 \sim N$ 中最大的反质数,就是 $1 \sim N$ ...

  3. 【BZOJ】【2219】数论之神

    中国剩余定理+原根+扩展欧几里得+BSGS 题解:http://blog.csdn.net/regina8023/article/details/44863519 新技能get√: LL Get_yu ...

  4. Bzoj 3505: [Cqoi2014]数三角形 数论

    3505: [Cqoi2014]数三角形 Time Limits: 1000 ms  Memory Limits: 524288 KB  Detailed Limits   Description

  5. bzoj 4034(DFS序+线段树)

    这个题多了一个操作难度直线上升,看完题解才会写 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 ...

  6. bzoj 3834 [Poi2014]Solar Panels 数论分块

    3834: [Poi2014]Solar Panels Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 367  Solved: 285[Submit] ...

  7. bzoj 2819(DFS序+树状数组+博弈+lca)

    2819: Nim Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 2045  Solved: 795[Submit][Status][Discuss] ...

  8. bzoj 2440 dfs序

    首先我们可以做一遍dfs,用一个队列记录每个点进出的顺序,当每个点访问的时候que[tot++]=x,记为in[x],当结束dfs的时候que[tot++]=x,记为out[x],这样处理出来的队列, ...

  9. 「BZOJ 2440」完全平方数「数论分块」

    题意 \(T\)组数据,每次询问第\(k\)个无平方因子的数(\(1\)不算平方因子),\(T\leq 50,k\leq 10^9\) 题解 \(k\)的范围很大,枚举肯定不行,也没什么奇妙性质,于是 ...

随机推荐

  1. 011. C++ friend使用

    1.friend 友元 将一个函数定义为friend,可以读取private数据: 显然,friend提供便利的同时,会破坏C++的封装性,因此,建议谨慎使用,朋友多了也许是个困扰. class co ...

  2. 高并发大容量NoSQL解决方案探索

    大数据时代,企业对于DBA也提出更高的需求.同时,NoSQL作为近几年新崛起的一门技术,也受到越来越多的关注.本文将基于个推SRA孟显耀先生所负责的DBA工作,和大数据运维相关经验,分享两大方向内容: ...

  3. rename table table1 to table2;

    1. MYSQL rename table table1 to table2;

  4. bzoj 2375: 疯狂的涂色

    2375: 疯狂的涂色 Time Limit: 5 Sec  Memory Limit: 128 MB Description 小t非常喜爱画画,但是他还是一个初学者.他最近费尽千辛万苦才拜到已仙逝的 ...

  5. Python学习笔记(2.1)函数参数练习

    关键字参数 和 命名关键字参数 # -*- coding: utf-8 -*- def print_scores(**kw): print(' Name Score') print('-------- ...

  6. 从零搭建SSM框架(五)Maven实现Tomcat热部署

    配置tomcat 第一步:需要修改tomcat的conf/tomcat-users.xml配置文件.添加用户名.密码.权限. <role rolename="manager-gui&q ...

  7. [oracle]解决centos 7下oracle的中文乱码问题

    首先在形成中文乱码的原因是由于字符集不统一导致的,不同的字符集在转换的过程中必然要出现乱码,当然不排除可以转换.所以要解决中文乱码问题,思路是将输入.存储.显示等流程中涉及到字符集都统一为一种,对于o ...

  8. 【计蒜客】是男人就过 8 题--Pony.AI 题 A. A String Game 后缀自动机+SG函数

    [题目]A. A String Game [题意]给定目标串S和n个子串Ti,Alice和Bob轮流选择一个子串操作,必须且只能在子串末尾添加一个字符使得新串也是S的子串,不能操作即输,求胜利者.|S ...

  9. 【BZOJ】1076 [SCOI2008]奖励关 期望DP+状压DP

    [题意]n种宝物,k关游戏,每关游戏给出一种宝物,可捡可不捡.每种宝物有一个价值(有负数).每个宝物有前提宝物列表,必须在前面的关卡取得列表宝物才能捡起这个宝物,求期望收益.k<=100,n&l ...

  10. Python :集合类型(set)

    set 是一个无序的元素集合,支持并.交.差及对称差等数学运算, 但由于 set 不记录元素位置,因此不支持索引.分片等序列的操作. 一.初始化 s0 = set() d0 = {} s1 = {0} ...