[BZOJ4028][HEOI2015]公约数数列(分块)
先发掘性质:
1.xor和gcd均满足交换律与结合率。
2.前缀gcd最多只有O(log)个。
但并没有什么数据结构能同时利用这两个性质,结合Q=10000,考虑分块。
对每块记录这几个信息:
1.块内所有数的gcd与异或和。
2.将块内所有前缀异或和放入一个数组排序。
查询时从前往后遍历每个块:
1.若当前块不使gcd改变,二分查找是否存在答案。
2.若改变,暴力查找答案。
复杂度(设块大小为S,值域为M):
1.修改复杂度$O(S\log S)$
2.查询复杂度$O(S\log M+\frac{n}{S}\log S)$。
当$S=\sqrt{n}$时复杂度最优,为$O(Q\sqrt{n}\log n)$。
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef long long ll;
using namespace std; const int N=,K=;
char op[];
int n,B,tot,Q,ans,L[K],R[K];
ll x,k,a[N],G[K],X[K];
struct P{ ll x; int id; }p[N];
bool operator <(const P &a,const P &b){ return (a.x==b.x) ? a.id<b.id : a.x<b.x; } ll gcd(ll a,ll b){ return b ? gcd(b,a%b) : a; } void build(int x){
G[x]=X[x]=a[L[x]]; p[L[x]]=(P){X[x],L[x]};
rep(j,L[x]+,R[x]) G[x]=gcd(G[x],a[j]),X[x]^=a[j],p[j]=(P){X[x],j};
sort(p+L[x],p+R[x]+);
} int find(int l,int r,ll k){
while (l<r){
int mid=(l+r)>>;
if (p[mid].x<k) l=mid+; else r=mid;
}
return r;
} int main(){
freopen("bzoj4028.in","r",stdin);
freopen("bzoj4028.out","w",stdout);
scanf("%d",&n); B=; tot=(n-)/B+;
rep(i,,n) scanf("%lld",&a[i]);
rep(i,,tot) L[i]=(i-)*B+,R[i]=min(n,i*B),build(i);
for (scanf("%d",&Q); Q--; ){
scanf("%s",op);
if (op[]=='M') scanf("%lld%lld",&x,&k),x++,a[x]=k,build((x-)/B+);
else{
scanf("%lld",&x); ll g=a[],t=; bool w=;
rep(i,,tot){
if (gcd(g,G[i])==g){
if (x%g==){
ll k=x/g^t; int ans=find(L[i],R[i],k);
if (p[ans].x==(x/g^t)){ printf("%d\n",p[ans].id-); w=; break; }
}
g=gcd(g,G[i]); t^=X[i];
}else
rep(j,L[i],R[i]){
g=gcd(g,a[j]); t^=a[j];
if (g*t==x){ printf("%d\n",j-); w=; break; }
}
if (w) break;
}
if (!w) puts("no");
}
}
return ;
}
[BZOJ4028][HEOI2015]公约数数列(分块)的更多相关文章
- 【BZOJ4028】[HEOI2015]公约数数列 分块
[BZOJ4028][HEOI2015]公约数数列 Description 设计一个数据结构. 给定一个正整数数列 a_0, a_1, ..., a_{n - 1},你需要支持以下两种操作: 1. M ...
- BZOJ 4028: [HEOI2015]公约数数列 分块
4028: [HEOI2015]公约数数列 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4028 Description 设计一个数据结 ...
- BZOJ4028 HEOI2015公约数数列(分块)
前缀gcd的变化次数是log的,考虑对每一种gcd查询,问题变为查询一段区间是否存在异或前缀和=x/gcd. 无修改的话显然可以可持久化trie,但这玩意实在没法支持修改.于是考虑分块. 对于每一块将 ...
- bzoj4028: [HEOI2015]公约数数列
Description 设计一个数据结构. 给定一个正整数数列 a_0, a_1, ..., a_{n - 1},你需要支持以下两种操作: 1. MODIFY id x: 将 a_{id} 修改为 x ...
- [BZOJ4028][HAOI2015]公约数数列[分块+分析暴力]
题意 题目链接 分析 首先明确 \(xor\) 运算和 \(\rm gcd\) 没有联系! 注意到一个数字取 \(\rm gcd\) 且保证每次取 \(\rm gcd\) 值都会变小的话,最多取 \( ...
- 【BZOJ4028】[HEOI2015]公约数数列(分块)
[BZOJ4028][HEOI2015]公约数数列(分块) 题面 BZOJ 洛谷 题解 看一道题目就不会做系列 首先\(gcd\)最多只会有\(log\)种取值,所以我们可以暴力枚举出所有可能的\(g ...
- BZOJ 4028: [HEOI2015]公约数数列 【分块 + 前缀GCD】
任意门:https://www.lydsy.com/JudgeOnline/problem.php?id=4028 4028: [HEOI2015]公约数数列 Time Limit: 10 Sec ...
- 洛谷 P4108 / loj 2119 [HEOI2015] 公约数数列 题解【分块】
看样子分块题应该做的还不够. 题目描述 设计一个数据结构. 给定一个正整数数列 \(a_0, a_1, \ldots , a_{n-1}\),你需要支持以下两种操作: MODIFY id x: 将 \ ...
- luogu P4108 [HEOI2015]公约数数列——solution
-by luogu 不会啊.... 然后%了一发题解, 关键是 考虑序列{$a_n$}的前缀gcd序列, 它是单调不升的,且最多只会改变$log_2N$次,因为每变一次至少除2 于是,当我们询问x时: ...
随机推荐
- 关于HttpWebRequest发生服务器协议冲突的解决办法
WinForm下的app.config文件中添加: <system.net> <settings> <httpWebRequest useUnsafeHe ...
- NYOJ 141 Squares (数学)
题目链接 描述 A square is a 4-sided polygon whose sides have equal length and adjacent sides form 90-degre ...
- JFinal向客户端渲染图片的方法
JFinal提供了好几种方便的render但是不知道为啥就是没有提供直接渲染图片的render,如果我们直接在Controller的方法中往输入流中写的话是还是会有默认的render生效的,比如下面这 ...
- Traffic-Server配置(待补充和更新)
Server 5.3.2 测试1.裸盘:remap.configmap http://192.168.227.131 http://192.168.227.131:8080 #traffic_serv ...
- Mysql储存过程7: case
#用在储存过程中: create procedure k() begin declare number int; )); case number then select '>0'; else s ...
- thinkphp 5.0 代码执行漏洞
https://github.com/vulhub/vulhub/blob/master/thinkphp/5-rce docker-compose -f /home/root/compose.yml ...
- 某团队线下赛AWD writeup&Beescms_V4.0代码审计
还是跟上篇一样.拿别人比赛的来玩一下. 0x01 预留后门 连接方式: 0x02 后台登录口SQL注入 admin/login.php 在func.php当中找到定义的check_login函数 很 ...
- ASLR
@author:dlive ASLR address space layout randomization 微软从windows vista/windows server 2008(kernel ve ...
- Python多态、鸭子类型
一.多态 多态指的是一类事物有多种形态. 动物有多种形态:人,狗,猪 import abc class Animal(metaclass=abc.ABCMeta): #同一类事物:动物 @abc.ab ...
- 在ubuntu上安装Chrome
1.下载谷歌浏览器源文件.链接有很多,以下是64位版本的下载地址 https://dl.google.com/linux/direct/google-chrome-stable_current_amd ...