【四边形不等式】HDU3516-Tree Construction
【题目大意】
给定n个点(x,y),并且保证xi<xj&&yi>yj当i<j。要求建一颗树,树的边只能向上和向右生长,求将所有点都连起来树的长度最小。

【思路】
定义状态 dp[i,j]表示点i到点j合并在一起的最小花费(树枝的长度)。如dp[3,4]表示图中绿色的这一段。

状态转移方程:dp[i,j]= min(dp[i,k]+dp[k+1,j]+w(i,j) ) i<k<j,w(i,j)=py[k]-py[j]+px[k+1]-px[i]。
【注意点】
初始化的时候s[i][i]=i-1,因为i<k<j,k不能取i。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int MAXN=;
const int INF=1e9;
//这里INF设太大会溢出来
int T,t,n;
int dp[MAXN][MAXN],s[MAXN][MAXN];
int x[MAXN],y[MAXN]; void solve()
{
for(int i=n;i>=;i--)
for(int j=i+;j<=n;j++)
{
dp[i][j]=INF;
for(int k=s[i][j-];k<=s[i+][j];k++)
{
int ret=dp[i][k]+dp[k+][j]+x[k+]-x[i]+y[k]-y[j];
if(ret<dp[i][j])
{
dp[i][j]=ret;
s[i][j]=k;
}
}
}
printf("%d\n",dp[][n]);
} void init()
{
for(int i=;i<=n;i++)
scanf("%d%d",&x[i],&y[i]);
memset(dp,,sizeof(dp));
memset(s,,sizeof(s));
for(int i=;i<=n;i++)
s[i][i]=i-;
} int main()
{
while(~scanf("%d",&n))
{
init();
solve();
}
}
【四边形不等式】HDU3516-Tree Construction的更多相关文章
- HDU 3516 DP 四边形不等式优化 Tree Construction
设d(i, j)为连通第i个点到第j个点的树的最小长度,则有状态转移方程: d(i, j) = min{ d(i, k) + d(k + 1, j) + p[k].y - p[j].y + p[k+1 ...
- [HDU3516] Tree Construction [四边形不等式dp]
题面: 传送门 思路: 这道题有个结论: 把两棵树$\left[i,k\right]$以及$\left[k+1,j\right]$连接起来的最小花费是$x\left[k+1\right]-x\left ...
- hdu3516 Tree Construction (区间dp+四边形优化)
构造方法肯定是把相邻两个点连到一起,变成一个新点,然后再把新点和别的点连到一起.... 设f[i,j]为把第i到j个点都连到一起的代价,那么答案就是f[1,n] f[i,j]=min{f[i,k]+f ...
- hdu3516 Tree Construction (四边形不等式)
题意:给定一些点(xi,yi)(xj,yj)满足:i<j,xi<xj,yi>yj.用下面的连起来,使得所有边的长度最小? 题解:直接给出吧 f[i][j]=min(f[i][k]+f ...
- hdu3516 Tree Construction
Problem Description Consider a two-dimensional space with a set of points (xi, yi) that satisfy xi & ...
- HDOJ 3516 Tree Construction
四边形优化DP Tree Construction Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Jav ...
- HDU 3516 Tree Construction (四边形不等式)
题意:给定一些点(xi,yi)(xj,yj)满足:i<j,xi<xj,yi>yj.用下面的连起来,使得所有边的长度最小? 思路:考虑用区间表示,f[i][j]表示将i到j的点连起来的 ...
- HDU.3516.Tree Construction(DP 四边形不等式)
题目链接 贴个教程: 四边形不等式学习笔记 \(Description\) 给出平面上的\(n\)个点,满足\(X_i\)严格单增,\(Y_i\)严格单减.以\(x\)轴和\(y\)轴正方向作边,使这 ...
- 【转】斜率优化DP和四边形不等式优化DP整理
(自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...
随机推荐
- js日期工具
/** * 日期工具类 */ define(function(require, exports, module) { var constants = require("constants&q ...
- Python中raw_input() & input() 的功能对比
raw_input的功能是方便的从控制台读入数据. input与raw_input都是Python的内建函数,实现与用户的交互,但是功能不同. 一.raw_input 下面介绍让raw_input的 ...
- Python——文件打开模式辨析
版权声明:本文系原创,转载请注明出处及链接. Python中,open()函数打开文件时打开模式如r.r+ .w+.w.a.a+有何不同 r 只能读 r+ 可读可写,不会创建不存在的文件.如果直接写文 ...
- ActiveMQ-如何使用JMS API?
JMS编程模型 JMS定义了Java中访问消息中间件的一组接口,主要包括ConnectionFactory.Connection.Session.Destination.MessageProducer ...
- Geoserver WFS跨域设置
测试版本为geoserver2.11.0. 两种方法都可以实现跨域设置: 第一种: 下载跨域jar包jetty-servlets.jar(下载geoserver使用的对应jetty版本——可以查看&l ...
- asp基础
0.1在浏览器中通过查看源代码的方式是无法看到 ASP 源代码的,你只能看到由 ASP 文件输出的结果,而那些只是纯粹的 HTML 而已.这是因为,在结果被送回浏览器前,脚本已经在服务器上执行了. 0 ...
- HTML 禁止显示input默认提示信息
看问题 html代码 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&quo ...
- laravel5.1--数据库操作
1 配置信息 1.1配置目录: config/database.php 1.2配置多个数据库 //默认的数据库 'mysql' => [ 'driver' => 'mysql', 'hos ...
- 二、python框架相关知识体系
Django框架 1.django框架.flask框架和Tornado框架的区别? django框架,内置组件多,自身功能强大,是一个大而全的框架,ORM.Admin.中间件.Form.ModelFr ...
- Linux 用户篇——用户管理命令之useradd、passwd、userdel、usermod
一.用户重要,用户管理命令同样重要 用户是Linux系统安全的核心,每个登录Linux系统的用户都会分配相应的权限,这些权限取决于能否访问系统中各种对象.而管理这些用户的相关信息离不开用户管理命令,比 ...