开发语言:JAVA

开发工具:eclipse (下载地址 http://www.eclipse.org/downloads/)

liblinear版本:liblinear-1.94.jar (下载地址:http://liblinear.bwaldvogel.de/

更多信息请参考:http://www.csie.ntu.edu.tw/~cjlin/liblinear/

1.下载 liblinear-1.94.jar,导入工程

在工程上右键---->Properties----->选中Java Build Path----->选中Libraries标签----->点击Add External JARs。

找到需要添加的jar包,确定即可。

2.创建LibLinear类 (类名自选)

代码如下:

 package liblinear;

 import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List; import de.bwaldvogel.liblinear.Feature;
import de.bwaldvogel.liblinear.FeatureNode;
import de.bwaldvogel.liblinear.Linear;
import de.bwaldvogel.liblinear.Model;
import de.bwaldvogel.liblinear.Parameter;
import de.bwaldvogel.liblinear.Problem;
import de.bwaldvogel.liblinear.SolverType; public class LibLinear{
public static void main(String[] args) throws Exception {
//loading train data
Feature[][] featureMatrix = new Feature[5][];
Feature[] featureMatrix1 = { new FeatureNode(2, 0.1), new FeatureNode(3, 0.2) };
Feature[] featureMatrix2 = { new FeatureNode(2, 0.1), new FeatureNode(3, 0.3), new FeatureNode(4, -1.2)};
Feature[] featureMatrix3 = { new FeatureNode(1, 0.4) };
Feature[] featureMatrix4 = { new FeatureNode(2, 0.1), new FeatureNode(4, 1.4), new FeatureNode(5, 0.5) };
Feature[] featureMatrix5 = { new FeatureNode(1, -0.1), new FeatureNode(2, -0.2), new FeatureNode(3, 0.1), new FeatureNode(4, -1.1), new FeatureNode(5, 0.1) };
featureMatrix[0] = featureMatrix1;
featureMatrix[1] = featureMatrix2;
featureMatrix[2] = featureMatrix3;
featureMatrix[3] = featureMatrix4;
featureMatrix[4] = featureMatrix5;
//loading target value
double[] targetValue = {1,-1,1,-1,0}; Problem problem = new Problem();
problem.l = 5; // number of training examples:训练样本数
problem.n = 5; // number of features:特征维数
problem.x = featureMatrix; // feature nodes:特征数据
problem.y = targetValue; // target values:类别 SolverType solver = SolverType.L2R_LR; // -s 0
double C = 1.0; // cost of constraints violation
double eps = 0.01; // stopping criteria Parameter parameter = new Parameter(solver, C, eps);
Model model = Linear.train(problem, parameter);
File modelFile = new File("model");
model.save(modelFile);
// load model or use it directly
model = Model.load(modelFile); Feature[] testNode = { new FeatureNode(1, 0.4), new FeatureNode(3, 0.3) };//test node
double prediction = Linear.predict(model, testNode);
System.out.print("classification result: "+prediction);
}
}

运行后得到testNode的分类结果:

3.参数说明

1. SolverType是solver的类型,可以是如下一种:

分类器:

  • L2R_LR:L2-regularized logistic regression (primal)
  • L2R_L2LOSS_SVC_DUAL:L2-regularized L2-loss support vector classification (dual)
  • L2R_L2LOSS_SVC:L2-regularized L2-loss support vector classification (primal)
  • L2R_L1LOSS_SVC_DUAL:L2-regularized L1-loss support vector classification (dual)
  • MCSVM_CS:supportvector classification by Crammer and Singer
  • L1R_L2LOSS_SVC:L1-regularized L2-loss support vector classification
  • L1R_LR:L1-regularized logistic regression
  • L2R_LR_DUAL:L2-regularized logistic regression (dual)

回归模型:

  • L2R_L2LOSS_SVR:L2-regularized L2-loss support vector regression (primal)
  • L2R_L2LOSS_SVR_DUAL:L2-regularized L2-loss support vector regression (dual)
  • L2R_L1LOSS_SVR_DUAL:L2-regularized L1-loss support vector regression (dual)

2. 是约束violation的代价参数 (默认为1)

3. eps 是迭代停止条件的容忍度tolerance

本程序采用的训练样本如下(5个训练样本,5维特征):

label feature1 feature2 feature3 feature4 feature5
1 0 0.1 0.2 0 0
-1 0 0.1 0.3 -1.2 0
1 0.4 0 0 0 0
-1 0 0.1 0 1.4 0.5
0 -0.1 -0.2 0.1 1.1 0.1

测试样本为testNode变量:(0.4,0,0.3,0,0)


本文为原创博客,若转载请注明出处。

liblinear参数及使用方法(原创)的更多相关文章

  1. url 传递参数(特殊字符)解决方法

    url 传递参数(特殊字符)解决方法 首先设置 apache 配置文件, server.xml 在 port=8080 那一行中加上 URIEcoding=GBK 有些符号在URL中是不能直接传递的, ...

  2. VS2013中带命令行参数的调试方法---C++

    今天先记录一下(也是传说中大神喜欢装逼的comment line)c++中向主函数int main(int argc,char** argv )传递4中方法,欢迎添加新方法, 然后可以参考别人写的很好 ...

  3. 低功耗蓝牙BLE之连接事件、连接参数和更新方法

    转自:http://blog.csdn.net/zzfenglin/article/details/51304084 连接事件 在一个连接当中,主设备会在每个连接事件里向从设备发送数据包.一个连接事件 ...

  4. Swift开发第十篇——可变参数函数&初始化方法顺序

    本篇分为两部分: 一.Swift中的可变参数函数 二.初始化方法的顺序 一.Swift中的可变参数函数 可变参数函数指的是可以接受任意多个参数的函数,在 OC 中,拼接字符串的函数就属于可变参数函数 ...

  5. Shell脚本中判断输入参数个数的方法投稿:junjie 字体:[增加 减小] 类型:转载

    Shell脚本中判断输入参数个数的方法 投稿:junjie 字体:[增加 减小] 类型:转载   这篇文章主要介绍了Shell脚本中判断输入参数个数的方法,使用内置变量$#即可实现判断输入了多少个参数 ...

  6. asp.net获取当前页面文件名,参数,域名等方法。统一session验证和权限验证的方法

    转:http://blog.csdn.net/llll29550242/article/details/6054323 ASP.net后台获取当前页面的文件名 System.IO.Path.GetFi ...

  7. NHibernate各种数据库连接参数文件配置方法说明

    //NHibernate各种数据库连接参数文件配置方法说明 //配置文件Config/Hibernate.cfg.xml内容如下所示: <?xml version="1.0" ...

  8. [五]java函数式编程归约reduce概念原理 stream reduce方法详解 reduce三个参数的reduce方法如何使用

    reduce-归约 看下词典翻译: 好的命名是自解释的 reduce的方法取得就是其中归纳的含义 java8 流相关的操作中,我们把它理解 "累加器",之所以加引号是因为他并不仅仅 ...

  9. PID控制最通俗的解释与PID参数的整定方法

    转自->这里 PID是比例.积分.微分的简称,PID控制的难点不是编程,而是控制器的参数整定.参数整定的关键是正确地理解各参数的物理意义,PID控制的原理可以用人对炉温的手动控制来理解.阅读本文 ...

随机推荐

  1. 修改ecshop后台的管理菜单

    ecshop后台菜单如何去修改,下面ecshop开发中心如何去修改 首先先打开后台菜单项相关文件: admin\includes\inc_menu.php languages\zh_cn\admin\ ...

  2. 离散化&&逆序数对

    题目:http://www.fjutacm.com/Problem.jsp?pid=3087 #include<stdio.h> #include<string.h> #inc ...

  3. flask插件系列之SQLAlchemy基础使用

    sqlalchemy是一个操作关系型数据库的ORM工具.下面研究一下单独使用和其在flask框架中的使用方法. 直接使用sqlalchemy操作数据库 安装sqlalchemy pip install ...

  4. Tomcat: Connector中HTTP与AJP差别与整合

    apache tomcat 整合(ajp proxy, http proxy) 1.软件: apache: httpd-2.2.17-win32-x86-openssl-0.9.8o.msi tomc ...

  5. [会装]Hive安装(基于mysql数据库)

    环境信息:Mac 安装步骤: 1. 下载hive组件(我选择的是社区的2.0.1版本) http://apache.mirror.globo.tech/hive/hive-2.0.1/ 2. 下载my ...

  6. python redis-string、list、set操作

    string操作 redis中的string在内存中都是按照一个key对应一个value来存储的 方法: set() 方法 : 写入一条数据 mset() 方法: 写入多条数据 , 可是Key-Val ...

  7. 以应用带动SDN发展(CDN峰会 工信部杨崑)(转)

    以应用带动SDN发展(CDN峰会 工信部杨崑)   SDNAP推荐:这是在亚太全媒体SDN峰会由工信部研究院秘书长杨崑做的关于SDN的一个演讲,本人认为主讲者通过对整 个信息服务体系的精简归纳总结,剥 ...

  8. JVM内存分配及GC简述

    在阐述JVM的内存区域之前,先来看下计算机的存储单位.从小到大依次为Bit,Byte,KB,MB,GB,TB.相邻的单位相差2的10次方. 计算机运行中的存储元件主要分为寄存器(位于CPU)和内存,寄 ...

  9. HDU 2894 DeBruijin (数位欧拉)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2894 题目大意:旋转鼓的表面分成m块扇形,如图所示(m=8).图中阴影区表示用导电材料制成,空白区用绝 ...

  10. hdu 5839(三维几何)

    Special Tetrahedron Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...