题目链接

每层每个位置向下一层这个位置连边,流量为下一层这个位置的\(f\),源点向第一层连,流量第一层每个位置的费用,最后一层向汇点连,流量\(INF\)。

这样就得到了\(P*Q\)条链,不考虑\(D\)的限制的话求最小割就是答案。

现在加入限制。记结论吧,我也不知道什么原理

每个位置从\(i=D+1\)层开始,向他前后左右第\(i-D\)层连边,流量\(INF\)。

然后求出最小割即为答案。

#include <cstdio>
#include <queue>
#include <cstring>
#define INF 2147483647
using namespace std;
const int MAXN = 900010;
const int MAXM = 2000010;
inline int read(){
int s = 0, w = 1;
char ch = getchar();
while(ch < '0' || ch > '9'){ if(ch == '-') w = -1; ch = getchar(); }
while(ch >= '0' && ch <= '9'){ s = s * 10 + ch - '0'; ch = getchar(); }
return s * w;
}
struct Edge{
int next, to, rest;
}e[MAXM];
int s, t, num = 1, n, m, a, b, c, p, q, r, d, f[45][45][45];
int head[MAXN];
inline void Add(int from, int to, int flow){
e[++num] = (Edge){ head[from], to, flow }; head[from] = num;
e[++num] = (Edge){ head[to], from, 0 }; head[to] = num;
}
int level[MAXN], now, sum;
queue <int> Q;
int re(){
memset(level, 0, sizeof level);
while(Q.size()) Q.pop();
Q.push(s); level[s] = 1;
while(Q.size()){
now = Q.front(); Q.pop();
for(int i = head[now]; i; i = e[i].next)
if(e[i].rest && !level[e[i].to]){
level[e[i].to] = level[now] + 1;
Q.push(e[i].to);
}
}
return level[t];
}
int findflow(int u, int flow){
if(!flow || u == t) return flow;
int f = 0, t;
for(int i = head[u]; i; i = e[i].next){
if(e[i].rest && level[e[i].to] == level[u] + 1){
f += (t = findflow(e[i].to, min(flow - f, e[i].rest)));
e[i].rest -= t; e[i ^ 1].rest += t;
}
}
if(!f) level[u] = 0;
return f;
}
int dinic(){
int ans = 0;
while(re())
ans += findflow(s, INF);
return ans;
}
int id(int k, int i, int j){
if(!k) return s;
return (k - 1) * (p * q) + (i - 1) * q + j;
}
int L[] = {233, -1, 1, 0, 0}, R[] = {666, 0, 0, -1, 1};
int main(){
p = read(); q = read(); r = read(); d = read();
s = 899999; t = 900000;
for(int i = 1; i <= p; ++i)
for(int j = 1; j <= q; ++j)
Add(id(r, i, j), t, INF);
for(int k = 1; k <= r; ++k)
for(int i = 1; i <= p; ++i)
for(int j = 1; j <= q; ++j)
Add(id(k - 1, i, j), id(k, i, j), read());
for(int i = 1; i <= p; ++i)
for(int j = 1; j <= q; ++j)
for(int k = 1; k <= 4; ++k){
int x = i + L[k], y = j + R[k];
if(!x || !y || x > p || y > q) continue;
for(int o = d + 1; o <= r; ++o)
Add(id(o, i, j), id(o - d, x, y), INF);
}
printf("%d\n", dinic());
return 0;
}

【洛谷 P3227】 [HNOI2013]切糕(最小割)的更多相关文章

  1. 洛谷 P3227 [HNOI2013]切糕(最小割)

    题解 Dinic求最小割 题目其实就是求最小的代价使得每个纵轴被分成两部分 最小割!!! 我们把每个点抽象成一条边,一个纵轴就是一条\(S-T\)的路径 但是题目要求\(|f(x,y)-f(x',y' ...

  2. [洛谷P3227][HNOI2013]切糕

    题目大意:有一个$n\times m$的切糕,每一个位置的高度可以在$[1,k]$之间,每个高度有一个代价,要求四联通的两个格子之间高度最多相差$D$,问可行的最小代价.$n,m,k,D\leqsla ...

  3. Luogu P3227 [HNOI2013]切糕 最小割

    首先推荐一个写的很好的题解,个人水平有限只能写流水账,还请见谅. 经典的最小割模型,很多人都说这个题是水题,但我还是被卡了=_= 技巧:加边表示限制 在没有距离\(<=d\)的限制时候,我们对每 ...

  4. 洛谷$P3227\ [HNOI2013]$切糕 网络流

    正解:网络流 解题报告: 传送门! 日常看不懂题系列,,,$QAQ$ 所以先放下题目大意趴$QwQ$,就说有个$p\cdot q$的矩阵,每个位置可以填一个$[1,R]$范围内的整数$a_{i,j}$ ...

  5. bzoj3144 [HNOI2013]切糕(最小割)

    bzoj3144 [HNOI2013]切糕(最小割) bzoj Luogu 题面描述见上 题解时间 一开始我真就把这玩意所说的切面当成了平面来做的 事实上只是说相邻的切点高度差都不超过 $ d $ 对 ...

  6. bzoj 3144: [Hnoi2013]切糕 最小割

    3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 681  Solved: 375[Submit][Status] ...

  7. 【BZOJ3144】[Hnoi2013]切糕 最小割

    [BZOJ3144][Hnoi2013]切糕 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q ...

  8. 【洛谷P3329】 [ZJOI2011]最小割(最小割树)

    洛谷 题意: 给出一个无向图,之后有\(q,q\leq 30\)组询问,每组询问有一个\(x\),回答有多少点对\((a,b)\)其\(a-b\)最小割不超过\(x\). 思路: 这个题做法要最小割树 ...

  9. BZOJ3144[Hnoi2013]切糕——最小割

    题目描述 输入 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤ ...

  10. bzoj 3144 [Hnoi2013]切糕——最小割

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3144 一根纵轴上切一个点,可以把一根纵轴上的点连成一串来体现.自己的写法是每个点连向前一个点 ...

随机推荐

  1. 3dContactPointAnnotationTool开发日志(二七)

      今天的主要工作是把选中物体以及复制删除物体和右边三个面板联系起来,就是通过鼠标框选住物体,右边面板的对应项的颜色也会改变,而且通过右边面板也能控制物体的选中状态,被选中的物体成cyan青色,并且包 ...

  2. 爬虫学习之-Python list 和 str 互转

      一.list转字符串 命令:''.join(list)其中,引号中是字符之间的分割符,如“,”,“;”,“\t”等等如:list = [1, 2, 3, 4, 5]''.join(list) 结果 ...

  3. Hibernate 中一级缓存和快照区的理解

    刚刚开始的时候觉得这个快照区很难理解,在网上看了很多博客之后,开始明白了.我是结合 ADO.NET 理解的,在ADO.NET 中有一个类, 叫 SqlCommandBuilder,在我看来,他就是 A ...

  4. 第202天:js---原型与原型链终极详解

    一. 普通对象与函数对象 JavaScript 中,万物皆对象!但对象也是有区别的.分为普通对象和函数对象,Object .Function 是 JS 自带的函数对象.下面举例说明 var o1 = ...

  5. 第201天:js---实现继承的5种方式

    一.构造函数方式 //构造函数 function People(){ this.race = '汉族'; } People.prototype={ eat:function(){ console.lo ...

  6. bzoj2301-Problem b

    题意 \(T\le 5\times 10^4\) 次询问,每次询问 \(a,b,c,d,k\le 5\times 10^4\),求 \[ \sum _{i=a}^b\sum _{j=c}^d[gcd( ...

  7. 【uoj#22】[UR #1]外星人 组合数学+dp

    题目描述 给你一个长度为 $n$ 的序列 $\{a_i\}$ 和一个数 $x$ ,对于任意一个 $1\sim n$ 的排列 $\{p_i\}$ ,从 $1$ 到 $n$ 依次执行 $x=x\ \tex ...

  8. android面试(3)---基本问题

    1.值类型,引用类型? 基本数据类型都是值类型:byte,short,int,long,float,double,char,boolean 其他类型都是引用类型. 引用类型在传入方法是,方法内部对引用 ...

  9. C++解析(27):数组、智能指针与单例类模板

    0.目录 1.数组类模板 1.1 类模板高效率求和 1.2 数组类模板 1.3 堆数组类模板 2.智能指针类模板 2.1 使用智能指针 2.2 智能指针类模板 3.单例类模板 3.1 实现单例模式 3 ...

  10. 待续--mysql中key 、primary key 、unique key 与index区别

    mysql中key .primary key .unique key 与index区别