Mayor's posters

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. 
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall. 

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input. 

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

Source

思路:离散化+树状数组;
ps:poj的离散化这题数据弱;
  给个样例;
  1
      3
      1 4
      1 2
      3 4
  答案应该是3吧;
     所以在长度为1的离散化中间需要再添加一个数;
  我的处理是在每个数后面再加一个相同的数;
  hiho的数据蛮强的;本人poj的代码有误懒得改了。虽然ac了;
  可以看我hiho的代码,差不多;
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define mod 1000000007
#define pi (4*atan(1.0))
const int N=1e5+,M=1e6+,inf=1e9+;
int sum[N*],lazy[N*];
set<int>s;
set<int>::iterator it;
void pushdown(int pos,int len)
{
int lson=pos*;
int rson=pos*+;
if(lazy[pos])
{
lazy[lson]=lazy[pos];
lazy[rson]=lazy[pos];
sum[lson]=lazy[pos];
sum[rson]=lazy[pos];
lazy[pos]=;
}
}
void buildtree(int l,int r,int pos)
{
lazy[pos]=;
sum[pos]=;
int mid=(l+r)>>;
if(l==r)
return;
buildtree(l,mid,pos*);
buildtree(mid+,r,pos*+);
}
void query(int l,int r,int pos)
{
pushdown(pos,r-l+);
if(l==r)
{
if(sum[pos])
s.insert(sum[pos]);
return;
}
int mid=(l+r)>>;
query(l,mid,pos*);
query(mid+,r,pos*+);
}
void update(int L,int R,int c,int l,int r,int pos)
{
if(L<=l&&r<=R)
{
lazy[pos]=c;
sum[pos]=c;
return;
}
pushdown(pos,(r-l+));
ll mid=(l+r)>>;
if(L<=mid)update(L,R,c,l,mid,pos*);
if(mid<R)update(L,R,c,mid+,r,pos*+);
}
struct is
{
int l,r;
}a[N<<];
int num[N<<];
int main()
{
int x,y,z,i,t;
int T;
scanf("%d",&T);
while(T--)
{
buildtree(,,);
s.clear();
int ji=;
scanf("%d",&x);
for(i=;i<x;i++)
{
scanf("%d%d",&a[i].l,&a[i].r);
num[ji++]=a[i].l;
num[ji++]=a[i].r;
}
sort(num,num+ji);
ji=;
for(i=;i<*x;i++)
if(num[i]!=num[ji-])
num[ji++]=num[i];
for(i=;i<x;i++)
{
int l=lower_bound(num,num+ji,a[i].l)-num;
int r=lower_bound(num,num+ji,a[i].r)-num;
update(l+,r+,i+,,,);
}
query(,,);
printf("%d\n",s.size());
}
return ;
}

#1079 : 离散化

时间限制:10000ms
单点时限:1000ms
内存限制:256MB

描述

小Hi和小Ho在回国之后,重新过起了朝7晚5的学生生活,当然了,他们还是在一直学习着各种算法~

这天小Hi和小Ho所在的学校举办社团文化节,各大社团都在宣传栏上贴起了海报,但是贴来贴去,有些海报就会被其他社团的海报所遮挡住。看到这个场景,小Hi便产生了这样的一个疑问——最后到底能有几张海报还能被看见呢?

于是小Ho肩负起了解决这个问题的责任:因为宣传栏和海报的高度都是一样的,所以宣传栏可以被视作长度为L的一段区间,且有N张海报按照顺序依次贴在了宣传栏上,其中第i张海报贴住的范围可以用一段区间[a_i, b_i]表示,其中a_i, b_i均为属于[0, L]的整数,而一张海报能被看到当且仅当存在长度大于0的一部分没有被后来贴的海报所遮挡住。那么问题就来了:究竟有几张海报能被看到呢?

提示一:正确的认识信息量

提示二:小Hi大讲堂之线段树的节点意义

输入

每个测试点(输入文件)有且仅有一组测试数据。

每组测试数据的第1行为两个整数N和L,分别表示总共贴上的海报数量和宣传栏的宽度。

每组测试数据的第2-N+1行,按照贴上去的先后顺序,每行描述一张海报,其中第i+1行为两个整数a_i, b_i,表示第i张海报所贴的区间为[a_i, b_i]。

对于100%的数据,满足N<=10^5,L<=10^9,0<=a_i<b_i<=L。

输出

对于每组测试数据,输出一个整数Ans,表示总共有多少张海报能被看到。

样例输入
5 10
4 10
0 2
1 6
5 9
3 4
样例输出
5
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define mod 1000000007
#define pi (4*atan(1.0))
const int N=1e5+,M=1e6+,inf=1e9+;
int sum[M*],lazy[M*];
set<int>s;
void pushdown(int pos,int len)
{
int lson=pos*;
int rson=pos*+;
if(lazy[pos])
{
lazy[lson]=lazy[pos];
lazy[rson]=lazy[pos];
sum[lson]=lazy[pos];
sum[rson]=lazy[pos];
lazy[pos]=;
}
}
void buildtree(int l,int r,int pos)
{
lazy[pos]=;
sum[pos]=;
int mid=(l+r)>>;
if(l==r)
return;
buildtree(l,mid,pos*);
buildtree(mid+,r,pos*+);
}
void query(int l,int r,int pos)
{
pushdown(pos,r-l+);
if(l==r)
{
if(sum[pos])
s.insert(sum[pos]);
return;
}
int mid=(l+r)>>;
query(l,mid,pos*);
query(mid+,r,pos*+);
}
void update(int L,int R,int c,int l,int r,int pos)
{
pushdown(pos,(r-l+));
if(L<=l&&r<=R)
{
lazy[pos]=c;
sum[pos]=c;
return;
}
int mid=(l+r)>>;
if(L<=mid)update(L,R,c,l,mid,pos*);
if(mid<R)update(L,R,c,mid+,r,pos*+);
}
struct is
{
int l,r;
}a[M*];
int num[M*];
int lisan[M*];
int main()
{
int x,y,z,i,t;
while(~scanf("%d%d",&x,&y))
{
s.clear();
int ji=;
for(i=;i<x;i++)
{
scanf("%d%d",&a[i].l,&a[i].r);
num[ji++]=a[i].l;
num[ji++]=a[i].r;
}
sort(num,num+ji);
ji=;
for(i=;i<*x;i++)
if(num[i]!=num[i-])
num[ji++]=num[i];
int gg=;
for(i=;i<ji;i++)
{
lisan[gg++]=num[i];
lisan[gg++]=num[i];
}
buildtree(,gg+,);
for(i=;i<x;i++)
{
int l=lower_bound(lisan,lisan+gg,a[i].l)-lisan;
int r=lower_bound(lisan,lisan+gg,a[i].r)-lisan;
update(l+,r+,i+,,gg+,);
}
query(,gg+,);
printf("%d\n",s.size());
}
return ;
}

poj 2528 Mayor's posters 线段树+离散化 || hihocode #1079 离散化的更多相关文章

  1. POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化)

    POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化) 题意分析 贴海报,新的海报能覆盖在旧的海报上面,最后贴完了,求问能看见几张海报. 最多有10000张海报,海报 ...

  2. poj 2528 Mayor's posters 线段树+离散化技巧

    poj 2528 Mayor's posters 题目链接: http://poj.org/problem?id=2528 思路: 线段树+离散化技巧(这里的离散化需要注意一下啊,题目数据弱看不出来) ...

  3. POJ 2528 Mayor's posters(线段树+离散化)

    Mayor's posters 转载自:http://blog.csdn.net/winddreams/article/details/38443761 [题目链接]Mayor's posters [ ...

  4. POJ 2528 Mayor's posters (线段树区间更新+离散化)

    题目链接:http://poj.org/problem?id=2528 给你n块木板,每块木板有起始和终点,按顺序放置,问最终能看到几块木板. 很明显的线段树区间更新问题,每次放置木板就更新区间里的值 ...

  5. POJ 2528 Mayor's posters (线段树+离散化)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:75394   Accepted: 21747 ...

  6. POJ 2528 Mayor’s posters (线段树段替换 && 离散化)

    题意 : 在墙上贴海报, n(n<=10000)个人依次贴海报,给出每张海报所贴的范围li,ri(1<=li<=ri<=10000000).求出最后还能看见多少张海报. 分析 ...

  7. poj 2528 Mayor's posters 线段树区间更新

    Mayor's posters Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=2528 Descript ...

  8. poj 2528 Mayor's posters(线段树)

    题目:http://poj.org/problem?id=2528 题意:有一面墙,被等分为1QW份,一份的宽度为一个单位宽度.现在往墙上贴N张海报,每张海报的宽度是任意的, 但是必定是单位宽度的整数 ...

  9. POJ 2528 Mayor's posters (线段树)

    题目链接:http://poj.org/problem?id=2528 题目大意:有一个很上的面板, 往上面贴海报, 问最后最多有多少个海报没有被完全覆盖 解题思路:将贴海报倒着想, 对于每一张海报只 ...

随机推荐

  1. B. Mike and Fun---cf548B(暴力求解)

    题目链接:http://codeforces.com/problemset/problem/548/B 有一个n*m的矩阵,里面只有0和1,现在有Q个改变,每次都把(x,y)这点变为相反的点(0变1, ...

  2. 如何让thrift0.9.2 在macos上面编译通过?

    为将来跨语言通信预研,选择了thrift来试试.结果在mac os上面安装遇到种种困难,不知道是我选择方法错误还是咋的,不管怎样,总算是编译过去了. 首先,我们来参考官网的安装步骤:https://t ...

  3. 【我的Android进阶之旅】推荐一款视频转换GIF图片格式的转换工具(Video to GIF)

    一.背景 最近想把一些Android Demo的运行效果图获取下来,但是一直使用真机进行调试,在电脑上不好截取一段gif动画.而之前使用模拟器的时候可以使用 GifCam 工具进行屏幕动画截取.Gif ...

  4. java.util.Calendar

    package day14; import com.sun.scenario.effect.impl.sw.sse.SSEBlend_SRC_OUTPeer; import java.util.Cal ...

  5. webpack打包页面空白的解决方法

  6. POJ 3171

    题目大意:        给定一个区间范围[M,E],接下来有n行输入.每行输入三个数值:T1,T2,S,表示覆盖区间[T1,T2] 的代价为S,要求你求出覆盖区间[M,E]的最小代价,假设不能覆盖, ...

  7. Linux文件权限分析

    一.用户组概念  在linux系统中,每个用户必属于一个组,不能独立于组之外.每个文件都有所有者,所在组和其他组这三个概念. (1)所有者:一般为文件的创建者,谁创建了该文件,就成为了该文件的所有者, ...

  8. WEB前端研发工程师编程能力成长之路(1)

    [背景] 如果你是刚进入WEB前端研发领域,想试试这潭水有多深,看这篇文章吧: 如果你是做了两三年WEB产品前端研发,迷茫找不着提高之路,看这篇文章吧: 如果你是四五年的前端开发高手,没有难题能难得住 ...

  9. Visual studio插件 Reshaper--- 常用快捷键

    快速修复 alt+enter (alt+enter唤出快速修复面板,上下方向键进行选择,再次敲击enter键确定修改) 跳转到对象声明 ctl+鼠标左键 重构-重命名(ctl+r+r) esc键退出 ...

  10. 多媒体文件格式分析 MP3文件结构及编解码流程

    多媒体文件格式分析 http://blog.csdn.net/taniya001/article/details/7962864 多媒体文件格式分析 MP3文件结构及编解码流程 http://www. ...