KM bfs写法

2018astar资格赛的第三题整数规划

把\(x, y\)看成二分图两边的顶标,\(a_{ij}\)就是二分图的边权,整道题其实就是求二分图的最大权匹配。

然后打了个\(dfs\)的\(KM\),\(TLE\)了,后来听别人说要用\(bfs\)的写法,因为那个才是真正的\(O(n^3)\),\(dfs\)的写法最坏情况还是\(O(n^4)\)。

原理是一样的,只不过\(bfs\)有一点点像迭代,每一次也只是搜\(diff=0\)的情况,而且右边的点只会搜索一次(或者说是左边的点只会搜索一次,即左边的每个点只会进队一次),用\(pre\)记住当前的交错路径,找到未匹配的就可以沿交错路径进行修改。

#include <bits/stdc++.h>
using namespace std; typedef long long LL;
const int maxn=210;
const LL inf=1LL<<60; int n; namespace KM
{
int n;
LL mat[maxn][maxn]; //边权
int matcha[maxn], matchb[maxn]; //左边的点匹配的右边点;右边的点匹配的左边点
LL marka[maxn], markb[maxn]; //左顶标;右顶标
LL slack[maxn]; //松弛数组
bool visa[maxn], visb[maxn]; //访问标记 int head, tail;
int q[maxn], pre[maxn]; //队列;交错路径 bool check(int cur)
{
visb[cur]=true; //标记cur已搜索
if (matchb[cur]) //已匹配,即当前匹配失败
{
if (!visa[matchb[cur]]) //匹配的点是否已进队
{
q[++tail]=matchb[cur];
visa[matchb[cur]]=true;
}
return false;
}
//未匹配,即当前匹配成功,沿交错路径进行匹配
while (cur)
swap(cur, matcha[matchb[cur]=pre[cur]]);
return true;
} void bfs(int start)
{
fill(visa, visa+1+n, false);
fill(visb, visb+1+n, false);
fill(slack, slack+1+n, inf); head=tail=1;
q[1]=start;
visa[start]=true; while (1)
{
while (head<=tail)
{
int cur=q[head++];
for (int i=1; i<=n; ++i)
{
LL diff=marka[cur]+markb[i]-mat[cur][i];
if (!visb[i] && diff<=slack[i]) //visb=true说明已搜索,无需更新slack和pre,也是保证pre的正确性
{
slack[i]=diff;
pre[i]=cur;
if (diff==0) //diff=0,可以尝试匹配
if (check(i)) return; //匹配成功可直接返回
}
}
} LL delta=inf;
for (int i=1; i<=n; ++i)
if (!visb[i] && slack[i]) delta=min(slack[i], delta);
for (int i=1; i<=n; ++i) //松弛
{
if (visa[i]) marka[i]-=delta;
if (visb[i]) markb[i]+=delta;
else slack[i]-=delta; //维护slack的正确性(参考diff的计算及marka,markb的变化)
} head=1, tail=0;
for (int i=1; i<=n; ++i)
if (!visb[i] && !slack[i] && check(i)) return;
//松弛后尝试匹配diff=0的点。
}
} void solve()
{
fill(matcha, matcha+1+n, 0);
fill(matchb, matchb+1+n, 0);
fill(markb, markb+1+n, 0); for (int i=1; i<=n; ++i)
{
marka[i]=0;
for (int j=1; j<=n; ++j)
marka[i]=max(marka[i], mat[i][j]);
} for (int i=1; i<=n; ++i) bfs(i);
}
} void read()
{
scanf("%d", &n);
KM::n=n;
for (int i=1; i<=n; ++i)
for (int j=1; j<=n; ++j)
{
int x;
scanf("%d", &x);
KM::mat[i][j]=-x;
}
} void solve()
{
KM::solve();
LL ans=0;
for (int i=1; i<=n; ++i)
ans+=KM::marka[i]+KM::markb[i];
printf("%lld\n", -ans);
} int main()
{
int casesum;
scanf("%d", &casesum);
for (int i=1; i<=casesum; ++i)
{
printf("Case #%d: ", i);
read();
solve();
}
return 0;
}

KM bfs写法的更多相关文章

  1. POJ1915Knight Moves(单向BFS + 双向BFS)

    题目链接 单向bfs就是水题 #include <iostream> #include <cstring> #include <cstdio> #include & ...

  2. Addition Chains POJ - 2248 (bfs / dfs / 迭代加深)

    An addition chain for n is an integer sequence <a0, a1,a2,...,am=""> with the follow ...

  3. uoj#80 二分图最大权匹配

    题意:给定二分图,有边权,求最大边权匹配.边权非负. 解:KM算法求解最大权完备匹配. 完备匹配就是点数少的那一边每个点都有匹配. 为了让完备匹配与最大权匹配等价,我们添加若干条0边使之成为完全二分图 ...

  4. 【bzoj1060】[ZJOI2007]时态同步

    题目描述 小Q在电子工艺实习课上学习焊接电路板.一块电路板由若干个元件组成,我们不妨称之为节点,并将其用数字1,2,3-.进行标号.电路板的各个节点由若干不相交的导线相连接,且对于电路板的任何两个节点 ...

  5. APIO2017商旅

    传送门(PDF) 题目大意:有$N$个点,$M$条有向边,$K$种物品,在不同的点可以用不同的价格买入或卖出某一种商品. 任意时刻至多持有一种物品,不能在同一个点先买再卖,求收益与长度之比最大的点数$ ...

  6. [LeetCode] 864. Shortest Path to Get All Keys 获得所有钥匙的最短路径

    We are given a 2-dimensional grid. "." is an empty cell, "#" is a wall, "@& ...

  7. 【剑指Offer】60、按之字形顺序打印二叉树

    题目描述 请实现一个函数按照之字形打印二叉树,即第一行按照从左到右的顺序打印,第二层按照从右至左的顺序打印,第三行按照从左到右的顺序打印,其他行以此类推. 题解:BFS 主要的方法与BFS写法没什么区 ...

  8. bzoj3436小K的农场

    bzoj3436小K的农场 题意: n个数,知道m条关系:a-b≥c.a-b≤c或a==b.问是否存在满足所有关系的情况.n≤10000,m≤10000. 题解: 差分约束.因为只要求是否满足,因此最 ...

  9. 【LeetCode】代码模板,刷题必会

    目录 二分查找 排序的写法 BFS的写法 DFS的写法 回溯法 树 递归 迭代 前序遍历 中序遍历 后序遍历 构建完全二叉树 并查集 前缀树 图遍历 Dijkstra算法 Floyd-Warshall ...

随机推荐

  1. 如果使用引用方式引用了js后 则不能再本地写js 因为写了后不会有效果

    如果使用引用方式引用了js后 则不能再本地写js 因为写了后不会有效果

  2. bzoj3622-已经没有什么好害怕的的了

    题意 给出两个长度为 \(n\) 的数列 \(a,b\) ,\(2n\) 个数都互不相同,求有多少种对应方式使得 \(a_i>b_i\) 的个数比 \(a_i<b_i\) 的个数恰好多 \ ...

  3. python 内置函数02

    1. lambda 匿名函数 lambda 参数: 返回值 #常规计算两个数相加的函数 def func(a,b): return a+b print(func(1,9)) #lambda函数 my_ ...

  4. Linux基础------文件打包解包---tar命令,文件压缩解压---命令gzip,vim编辑器创建和编辑正文件,磁盘分区/格式化,软/硬链接

    作业一:1) 将用户信息数据库文件和组信息数据库文件纵向合并为一个文件/1.txt(覆盖) cat /etc/passwd /etc/group > /1.txt2) 将用户信息数据库文件和用户 ...

  5. [Java多线程]-Thread和Runable源码解析

    多线程:(百度百科借一波定义) 多线程(英语:multithreading),是指从软件或者硬件上实现多个线程并发执行的技术.具有多线程能力的计算机因有硬件支持而能够在同一时间执行多于一个线程,进而提 ...

  6. URL参数带加号“+”AJAX传值失败的解决方法

    URL中参数的值有加号,虽然请求的URL中含有加号,但是GET的时候却得不到加号! 解决办法,用JavaScript的encodeURIComponent函数对加号进行编码. 如str="a ...

  7. Hibernate学习(5)- session的get与load方法对比

    1.共同点:get和load都是根据Id单条查询获取对象 org.hibernate.Session.load(Class<User> theClass, Serializable id) ...

  8. CSS3方法总汇

    PS:CSS3的3D和我做研发时的3D不一样他们只能旋转180度  横为X竖为Z高为Y transfrom:2D3D转换 rotareX:绕着X轴旋转 rotareY(-180deg):绕着Y轴旋转- ...

  9. 动态规划:双重DP

    之前做过的传纸条那道题就是双重动态规划的典型应用,题意就不描述了,直接贴一下以前写过的,经典代码 #include<iostream> using namespace std; ,maxm ...

  10. HDU 6199 DP 滚动数组

    强行卡内存 这题在CF上好像有道极相似的题 可以想到状态设计为dp[f][i][k]表示f在取完i-1时,此时可以取k个或k+1个的状态下的最大值.之前以为n是1e5,自己想不到怎么设计状态真的辣鸡, ...